Model Card for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-2.0
Model Details
Model Description
- Finetuned from model:[Na0s/Llama-3.1-8b-Pruned-4-Layers-1.0]
Training Details
model = FastLanguageModel.get_peft_model(
model,
r = 4,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 4,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
)
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "completion",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 10,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps=5000,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "cosine",
seed = 3407,
output_dir = "outputs_4",
push_to_hub=True,
hub_always_push=True,
),
)
Training Data
[meta-math/MetaMathQA]
Evaluation
MMLU Pro 0-shot: 0.2872
Evaluation Data
[TIGER-AI-Lab/MMLU-Pro]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-2.0
Base model
Na0s/Llama-3.1-8B-Pruned-4-Layers