metadata
language:
- ko
datasets:
- kyujinpy/ko-gu-platyorca-mergeset
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
⭐My custom LLM 13B⭐
Model Details
Model Developers
- Kyujin Han (kyujinpy)
Model Architecture
- My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Base Model
Training Dataset
Model comparisons
Ko-LLM leaderboard(11/27; link)
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
⭐My custom LLM 13B-v1⭐ | 50.19 | 45.99 | 56.93 | 41.78 | 41.66 | 64.58 |
⭐My custom LLM 13B-v4⭐ | 49.89 | 45.05 | 57.06 | 41.83 | 42.93 | 62.57 |
⭐My custom LLM 13B-v6⭐ | 47.78 | 45.22 | 56.60 | 42.36 | 42.31 | 52.42 |
Model comparisons2
AI-Harness evaluation; link
Model | Copa | Copa | HellaSwag | HellaSwag | BoolQ | BoolQ | Sentineg | Sentineg |
---|---|---|---|---|---|---|---|---|
0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | |
⭐My custom LLM 13B-v1⭐ | 0.7987 | 0.8269 | 0.4994 | 0.5660 | 0.3343 | 0.5060 | 0.6984 | 0.9723 |
⭐My custom LLM 13B-v4⭐** | 0.7988 | 0.8279 | 0.4995 | 0.4953 | 0.3343 | 0.3558 | 0.7825 | 0.9698 |
⭐My custom LLM 13B-v6⭐ | 0.7938 | 0.8259 | 0.4905 | 0.5620 | 0.8656 | 0.8457 | 0.3720 | 0.9698 |
beomi/llama-2-koen-13b | 0.7768 | 0.8128 | 0.4999 | 0.5127 | 0.3988 | 0.7038 | 0.5870 | 0.9748 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/Custom-KoLLM-13B-v6"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)