|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: mlabonne/NeuralMonarch-7B |
|
tags: |
|
- generated_from_trainer |
|
- axolotl |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
model-index: |
|
- name: AlphaMonarch-laser |
|
results: [] |
|
datasets: |
|
- argilla/OpenHermes2.5-dpo-binarized-alpha |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AlphaMonarch-laser |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/62S_ExHO6NKCM3NhPDrds.jpeg) |
|
|
|
AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset but achieves better performance then [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B/) using LaserQLoRA. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released by Maximme Labonne. I have trained this model for 1080 steps. |
|
|
|
AlphaMonarch-laser is ranking 1 on YALL - [Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/Jgxw1FZRx7nNAdSh7nYt1.png) |
|
|
|
## 🏆 Evaluation results |
|
|
|
# Nous Benchmark |
|
|
|
### AGIEVAL |
|
|
|
| Task | Version | Metric | Value | StdErr | |
|
|---------------------------------|---------|--------------|--------|--------| |
|
| agieval_aqua_rat | 0 | acc | 28.35% | 2.83% | |
|
| agieval_aqua_rat | 0 | acc_norm | 26.38% | 2.77% | |
|
| agieval_logiqa_en | 0 | acc | 38.25% | 1.91% | |
|
| agieval_logiqa_en | 0 | acc_norm | 38.10% | 1.90% | |
|
| agieval_lsat_ar | 0 | acc | 23.91% | 2.82% | |
|
| agieval_lsat_ar | 0 | acc_norm | 23.48% | 2.80% | |
|
| agieval_lsat_lr | 0 | acc | 52.75% | 2.21% | |
|
| agieval_lsat_lr | 0 | acc_norm | 53.92% | 2.21% | |
|
| agieval_lsat_rc | 0 | acc | 66.91% | 2.87% | |
|
| agieval_lsat_rc | 0 | acc_norm | 67.29% | 2.87% | |
|
| agieval_sat_en | 0 | acc | 78.64% | 2.86% | |
|
| agieval_sat_en | 0 | acc_norm | 78.64% | 2.86% | |
|
| agieval_sat_en_without_passage | 0 | acc | 45.15% | 3.48% | |
|
| agieval_sat_en_without_passage | 0 | acc_norm | 44.17% | 3.47% | |
|
| agieval_sat_math | 0 | acc | 33.18% | 3.18% | |
|
| agieval_sat_math | 0 | acc_norm | 31.36% | 3.14% | |
|
Average: 28.41% |
|
|
|
### GPT4ALL |
|
|
|
| Task | Version | Metric | Value | StdErr | |
|
|--------------|---------|----------|-------|--------| |
|
| arc_challenge| 0 | acc | 66.30%| ± 1.38%| |
|
| | | acc_norm | 68.26%| ± 1.36%| |
|
| arc_easy | 0 | acc | 86.57%| ± 0.70%| |
|
| | | acc_norm | 80.81%| ± 0.81%| |
|
| boolq | 1 | acc | 87.16%| ± 0.59%| |
|
| hellaswag | 0 | acc | 69.60%| ± 0.46%| |
|
| | | acc_norm | 87.45%| ± 0.33%| |
|
| openbookqa | 0 | acc | 39.20%| ± 2.19%| |
|
| | | acc_norm | 49.60%| ± 2.24%| |
|
| piqa | 0 | acc | 83.03%| ± 0.88%| |
|
| | | acc_norm | 84.87%| ± 0.84%| |
|
| winogrande | 0 | acc | 81.06%| ± 1.10%| |
|
Average: 76.98% |
|
|
|
### TRUTHFUL-QA |
|
|
|
| Task | Version | Metric | Value | StdErr | |
|
|---------------|---------|--------|-------|--------| |
|
| truthfulqa_mc | 1 | mc1 | 63.04%| ± 1.69%| |
|
| truthfulqa_mc | 1 | mc2 | 78.39%| ± 1.37%| |
|
Average: 70.71% |
|
|
|
### BIGBENCH |
|
|
|
| Task | Version | Metric | Value | StdErr | |
|
|------------------------------------------------|---------|-----------------------|-------|--------------------| |
|
| bigbench_causal_judgement | 0 | multiple_choice_grade| 60.00%| ± 3.56% | |
|
| bigbench_date_understanding | 0 | multiple_choice_grade| 62.06%| ± 2.53% | |
|
| bigbench_disambiguation_qa | 0 | multiple_choice_grade| 54.26%| ± 3.11% | |
|
| bigbench_geometric_shapes | 0 | multiple_choice_grade| 23.96%| ± 2.26% | |
|
| | | exact_str_match | 0.00% | ± 0.00% | |
|
| bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade| 32.80%| ± 2.10% | |
|
| bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade| 23.86%| ± 1.61% | |
|
| bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade| 59.33%| ± 2.84% | |
|
| bigbench_movie_recommendation | 0 | multiple_choice_grade| 58.00%| ± 2.21% | |
|
| bigbench_navigate | 0 | multiple_choice_grade| 56.00%| ± 1.57% | |
|
| bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade| 69.20%| ± 1.03% | |
|
| bigbench_ruin_names | 0 | multiple_choice_grade| 55.36%| ± 2.35% | |
|
| bigbench_salient_translation_error_detection | 0 | multiple_choice_grade| 41.48%| ± 1.56% | |
|
| bigbench_snarks | 0 | multiple_choice_grade| 73.48%| ± 3.29% | |
|
| bigbench_sports_understanding | 0 | multiple_choice_grade| 76.06%| ± 1.36% | |
|
| bigbench_temporal_sequences | 0 | multiple_choice_grade| 55.50%| ± 1.57% | |
|
| bigbench_tracking_shuffled_objects_five_objects| 0 | multiple_choice_grade| 23.28%| ± 1.20% | |
|
| bigbench_tracking_shuffled_objects_seven_objects| 0 | multiple_choice_grade| 19.37%| ± 0.94% | |
|
| bigbench_tracking_shuffled_objects_three_objects| 0 | multiple_choice_grade| 59.33%| ± 2.84% | |
|
Average: 55.37% |
|
|
|
# Openllm Benchmark |
|
|
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |70.12|± | 1.30| |
|
| | |acc_norm|73.27|± | 1.29| |
|
|hellaswag | 0|acc |71.80|± | 0.44| |
|
| | |acc_norm|89.20|± | 0.30| |
|
|gsm8k | 0|acc |66.77|± | 1.2 | |
|
|winogrande | 0|acc |84.6 |± | 1.0 | |
|
|
|
Average: 73.5% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |62.79|± | 1.69| |
|
| | |mc2 |77.90|± | 1.37| |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1080 |
|
|
|
|
|
|
|
### 📝 Axolotl Configuration |
|
|
|
```yaml |
|
base_model: mlabonne/NeuralMonarch-7B |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
rl: dpo |
|
chat_template: chatml |
|
datasets: |
|
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha |
|
split: train |
|
type: chatml.intel |
|
dataset_prepared_path: |
|
val_set_size: 0.01 |
|
output_dir: ./out |
|
adapter: qlora |
|
lora_model_dir: |
|
sequence_len: 1800 |
|
sample_packing: false |
|
pad_to_sequence_len: false |
|
lora_r: 16 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- layers.1.self_attn.q_proj |
|
- layers.0.self_attn.q_proj |
|
- layers.15.self_attn.q_proj |
|
- layers.12.self_attn.q_proj |
|
- layers.11.self_attn.q_proj |
|
- layers.14.self_attn.q_proj |
|
- layers.9.self_attn.q_proj |
|
- layers.16.self_attn.q_proj |
|
- layers.30.self_attn.q_proj |
|
- layers.18.self_attn.q_proj |
|
- layers.13.self_attn.q_proj |
|
- layers.10.self_attn.q_proj |
|
- layers.7.self_attn.q_proj |
|
- layers.8.self_attn.q_proj |
|
- layers.4.self_attn.q_proj |
|
- layers.19.self_attn.q_proj |
|
- layers.27.self_attn.k_proj |
|
- layers.24.self_attn.k_proj |
|
- layers.25.self_attn.k_proj |
|
- layers.22.self_attn.k_proj |
|
- layers.26.self_attn.k_proj |
|
- layers.29.self_attn.k_proj |
|
- layers.23.self_attn.k_proj |
|
- layers.28.self_attn.k_proj |
|
- layers.21.self_attn.k_proj |
|
- layers.31.self_attn.k_proj |
|
- layers.30.self_attn.k_proj |
|
- layers.20.self_attn.k_proj |
|
- layers.5.self_attn.k_proj |
|
- layers.19.self_attn.k_proj |
|
- layers.17.self_attn.k_proj |
|
- layers.18.self_attn.k_proj |
|
- layers.19.self_attn.v_proj |
|
- layers.24.self_attn.v_proj |
|
- layers.18.self_attn.v_proj |
|
- layers.5.self_attn.v_proj |
|
- layers.3.self_attn.v_proj |
|
- layers.16.self_attn.v_proj |
|
- layers.23.self_attn.v_proj |
|
- layers.27.self_attn.v_proj |
|
- layers.25.self_attn.v_proj |
|
- layers.26.self_attn.v_proj |
|
- layers.20.self_attn.v_proj |
|
- layers.6.self_attn.v_proj |
|
- layers.15.self_attn.v_proj |
|
- layers.17.self_attn.v_proj |
|
- layers.29.self_attn.v_proj |
|
- layers.22.self_attn.v_proj |
|
- layers.12.self_attn.o_proj |
|
- layers.9.self_attn.o_proj |
|
- layers.14.self_attn.o_proj |
|
- layers.0.self_attn.o_proj |
|
- layers.6.self_attn.o_proj |
|
- layers.8.self_attn.o_proj |
|
- layers.10.self_attn.o_proj |
|
- layers.11.self_attn.o_proj |
|
- layers.13.self_attn.o_proj |
|
- layers.24.self_attn.o_proj |
|
- layers.7.self_attn.o_proj |
|
- layers.15.self_attn.o_proj |
|
- layers.5.self_attn.o_proj |
|
- layers.17.self_attn.o_proj |
|
- layers.25.self_attn.o_proj |
|
- layers.4.self_attn.o_proj |
|
- layers.31.mlp.gate_proj |
|
- layers.30.mlp.gate_proj |
|
- layers.4.mlp.gate_proj |
|
- layers.3.mlp.gate_proj |
|
- layers.29.mlp.gate_proj |
|
- layers.28.mlp.gate_proj |
|
- layers.6.mlp.gate_proj |
|
- layers.27.mlp.gate_proj |
|
- layers.5.mlp.gate_proj |
|
- layers.26.mlp.gate_proj |
|
- layers.25.mlp.gate_proj |
|
- layers.7.mlp.gate_proj |
|
- layers.2.mlp.gate_proj |
|
- layers.24.mlp.gate_proj |
|
- layers.23.mlp.gate_proj |
|
- layers.10.mlp.gate_proj |
|
- layers.6.mlp.up_proj |
|
- layers.4.mlp.up_proj |
|
- layers.5.mlp.up_proj |
|
- layers.27.mlp.up_proj |
|
- layers.25.mlp.up_proj |
|
- layers.26.mlp.up_proj |
|
- layers.17.mlp.up_proj |
|
- layers.24.mlp.up_proj |
|
- layers.7.mlp.up_proj |
|
- layers.10.mlp.up_proj |
|
- layers.3.mlp.up_proj |
|
- layers.11.mlp.up_proj |
|
- layers.23.mlp.up_proj |
|
- layers.9.mlp.up_proj |
|
- layers.14.mlp.up_proj |
|
- layers.18.mlp.up_proj |
|
- layers.19.mlp.down_proj |
|
- layers.20.mlp.down_proj |
|
- layers.18.mlp.down_proj |
|
- layers.21.mlp.down_proj |
|
- layers.29.mlp.down_proj |
|
- layers.1.mlp.down_proj |
|
- layers.22.mlp.down_proj |
|
- layers.28.mlp.down_proj |
|
- layers.23.mlp.down_proj |
|
- layers.30.mlp.down_proj |
|
- layers.17.mlp.down_proj |
|
- layers.4.mlp.down_proj |
|
- layers.2.mlp.down_proj |
|
- layers.15.mlp.down_proj |
|
- layers.5.mlp.down_proj |
|
wandb_project: axolotl |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_32bit |
|
lr_scheduler: cosine |
|
learning_rate: 5e-7 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: true |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
warmup_steps: 100 |
|
evals_per_epoch: 1 |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
save_steps: 1080 |
|
max_steps: 1080 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
``` |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.0 |
|
- axolotl: 0.4.0 |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |