|
--- |
|
license: other |
|
license_name: tongyi-qianwen |
|
license_link: >- |
|
https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat/blob/main/LICENSE |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- chat |
|
--- |
|
|
|
# Qwen1.5-MoE-A2.7B-Chat |
|
|
|
|
|
## Introduction |
|
|
|
Qwen1.5-MoE is a transformer-based MoE decoder-only language model pretrained on a large amount of data. |
|
|
|
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen-moe/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). |
|
|
|
## Model Details |
|
Qwen1.5-MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, `Qwen1.5-MoE-A2.7B` is upcycled from `Qwen-1.8B`. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieching comparable performance to `Qwen1.5-7B`, it only requires 25% of the training resources. We also observed that the inference speed is 1.74 times that of `Qwen1.5-7B`. |
|
|
|
## Training details |
|
We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. |
|
|
|
## Requirements |
|
The code of Qwen1.5-MoE has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error: |
|
``` |
|
KeyError: 'qwen2_moe'. |
|
``` |
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen1.5-MoE-A2.7B-Chat", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat") |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
For quantized models, we advise you to use the GPTQ correspondents, namely `Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4`. |
|
|
|
|
|
## Tips |
|
|
|
* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. |
|
* |