Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Moza-7B-v1.0 - GGUF

Original model description:

license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - mistralai/Mistral-7B-v0.1 - cognitivecomputations/dolphin-2.2.1-mistral-7b - Open-Orca/Mistral-7B-OpenOrca - openchat/openchat-3.5-0106 - mlabonne/NeuralHermes-2.5-Mistral-7B - GreenNode/GreenNode-mini-7B-multilingual-v1olet - berkeley-nest/Starling-LM-7B-alpha - viethq188/LeoScorpius-7B-Chat-DPO - meta-math/MetaMath-Mistral-7B - Intel/neural-chat-7b-v3-3 inference: false model-index: - name: Moza-7B-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.16 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kidyu/Moza-7B-v1.0 name: Open LLM Leaderboard

Moza-7B-v1.0

image/png

This is a meme-merge of pre-trained language models, created using mergekit. Use at your own risk.

Details

Quantized Model

Merge Method

This model was merged using the DARE TIES merge method, using mistralai/Mistral-7B-v0.1 as a base.

The value for density are from this blogpost, and the weight was randomly generated and then assigned to the models, with priority (of using the bigger weight) to NeuralHermes, OpenOrca, and neural-chat. The models themselves are chosen by "vibes".

Models Merged

The following models were included in the merge:

Prompt Format

You can use Alpaca formatting for inference

### Instruction:

### Response:

Configuration

The following YAML configuration was used to produce this model:

base_model: mistralai/Mistral-7B-v0.1
models:
  - model: mlabonne/NeuralHermes-2.5-Mistral-7B
    parameters:
      density: 0.63
      weight: 0.83
  - model: Intel/neural-chat-7b-v3-3
    parameters:
      density: 0.63
      weight: 0.74
  - model: meta-math/MetaMath-Mistral-7B
    parameters:
      density: 0.63
      weight: 0.22
  - model: openchat/openchat-3.5-0106
    parameters:
      density: 0.63
      weight: 0.37
  - model: Open-Orca/Mistral-7B-OpenOrca
    parameters:
      density: 0.63
      weight: 0.76
  - model: cognitivecomputations/dolphin-2.2.1-mistral-7b
    parameters:
      density: 0.63
      weight: 0.69
  - model: viethq188/LeoScorpius-7B-Chat-DPO
    parameters:
      density: 0.63
      weight: 0.38
  - model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
    parameters:
      density: 0.63
      weight: 0.13
  - model: berkeley-nest/Starling-LM-7B-alpha
    parameters:
      density: 0.63
      weight: 0.33
merge_method: dare_ties
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.66
AI2 Reasoning Challenge (25-Shot) 66.55
HellaSwag (10-Shot) 83.45
MMLU (5-Shot) 62.77
TruthfulQA (0-shot) 65.16
Winogrande (5-shot) 77.51
GSM8k (5-shot) 62.55
Downloads last month
292
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .