Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Orca-SOLAR-4x10.7b - GGUF

Original model description:

language: - en license: apache-2.0 library_name: transformers tags: - code datasets: - Intel/orca_dpo_pairs model-index: - name: Orca-SOLAR-4x10.7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 67.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.54 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard

πŸŒžπŸš€ Orca-SOLAR-4x10.7_36B

Merge of four Solar-10.7B instruct finetunes.

solar

🌟 Usage

This SOLAR model loves to code. In my experience, if you ask it a code question it will use almost all of the available token limit to complete the code.

However, this can also be to its own detriment. If the request is complex it may not finish the code in a given time period. This behavior is not because of an eos token, as it finishes sentences quite normally if its a non code question.

Your mileage may vary.

🌎 HF Spaces

This 36B parameter model is capabale of running on free tier hardware (CPU only - GGUF)

  • Try the model here

πŸŒ… Code Example

Example also available in colab

from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response


# Load the model and tokenizer
model_id = "macadeliccc/Orca-SOLAR-4x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."


print("Response:")
print(generate_response(prompt), "\n")

Llama.cpp

GGUF Quants available here

llama.cpp-screenshot

Evaluations

https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b

πŸ“š Citations

@misc{kim2023solar,
      title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling}, 
      author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
      year={2023},
      eprint={2312.15166},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.17
AI2 Reasoning Challenge (25-Shot) 68.52
HellaSwag (10-Shot) 86.78
MMLU (5-Shot) 67.03
TruthfulQA (0-shot) 64.54
Winogrande (5-shot) 83.90
GSM8k (5-shot) 68.23
Downloads last month
116
GGUF
Model size
36.1B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .