Mistral7b-fine-tuned-qlora
Model version and Dataset
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on timdettmers/openassistant-guanaco dataset.
Usage guidance
Please refer to this notebook for a complete demo including notes regarding cloud deployment
Inference
import os
from os.path import exists, join, isdir
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
from peft import PeftModel
from peft.tuners.lora import LoraLayer
# Update variables!
max_new_tokens = 100
top_p = 0.9
temperature=0.7
user_question = "What is central limit theorem?"
# Base model
model_name_or_path = 'mistralai/Mistral-7B-v0.1' # Change it to 'YOUR_BASE_MODEL'
adapter_path = 'ShirinYamani/mistral7b-fine-tuned-qlora' # Change it to 'YOUR_ADAPTER_PATH'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
# if you wanna use LLaMA HF then fix the early conversion issues.
tokenizer.bos_token_id = 1
# Load the model (use bf16 for faster inference)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map={"": 0},
# Qlora -- 4-bit config
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
)
)
model = PeftModel.from_pretrained(model, adapter_path)
model.eval()
prompt = (
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
"### Human: {user_question}"
"### Assistant: "
)
def generate(model, user_question, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature):
inputs = tokenizer(prompt.format(user_question=user_question), return_tensors="pt").to('cuda')
outputs = model.generate(
**inputs,
generation_config=GenerationConfig(
do_sample=True,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature,
)
)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(text)
return text
generate(model, user_question)
Training hyperparameters
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP
Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ShirinYamani/mistral7b-fine-tuned-qlora
Base model
mistralai/Mistral-7B-v0.1