bge_large_cn_new_prompt_llama3_70_2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9337
- Precision: 0.4748
- Recall: 0.3645
- F1 Macro: 0.3499
- Accuracy: 0.4695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2048
- eval_batch_size: 1024
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 10.0773 | 0.0731 | 0.1667 | 0.0201 | 0.0638 |
0.9787 | 2.9326 | 1000 | 0.9896 | 0.4564 | 0.3443 | 0.3343 | 0.4531 |
0.9384 | 5.8651 | 2000 | 0.9622 | 0.4761 | 0.3558 | 0.3436 | 0.4648 |
0.9347 | 8.7977 | 3000 | 0.9476 | 0.4705 | 0.3592 | 0.3447 | 0.4594 |
0.9172 | 11.7302 | 4000 | 0.9409 | 0.4716 | 0.3608 | 0.3453 | 0.4613 |
0.9073 | 14.6628 | 5000 | 0.9369 | 0.4661 | 0.3665 | 0.3535 | 0.4648 |
0.8973 | 17.5953 | 6000 | 0.9337 | 0.4748 | 0.3645 | 0.3499 | 0.4695 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4