Edit model card

bge_large_ja_llama3_70

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0015
  • Precision: 0.4921
  • Recall: 0.3553
  • F1 Macro: 0.3419
  • Accuracy: 0.4442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 256
  • eval_batch_size: 128
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 11.2074 0.0112 0.1667 0.0210 0.0673
1.1011 0.1575 1000 1.1103 0.4472 0.3212 0.3124 0.4230
1.0928 0.3150 2000 1.0853 0.4367 0.3324 0.3258 0.4117
1.0651 0.4724 3000 1.0764 0.4678 0.3383 0.3363 0.4380
1.0585 0.6299 4000 1.0546 0.4620 0.3380 0.3232 0.4267
1.0513 0.7874 5000 1.0633 0.4558 0.3414 0.3283 0.4138
1.0411 0.9449 6000 1.0415 0.4700 0.3430 0.3296 0.4334
1.0391 1.1024 7000 1.0445 0.4852 0.3415 0.3220 0.4227
1.0373 1.2598 8000 1.0378 0.4815 0.3483 0.3342 0.4330
1.039 1.4173 9000 1.0394 0.4762 0.3432 0.3273 0.4265
1.0408 1.5748 10000 1.0313 0.4992 0.3416 0.3253 0.4375
1.0274 1.7323 11000 1.0287 0.4959 0.3429 0.3265 0.4350
1.0296 1.8898 12000 1.0346 0.4822 0.3450 0.3278 0.4257
1.0404 2.0472 13000 1.0310 0.4844 0.3456 0.3349 0.4433
1.0194 2.2047 14000 1.0234 0.4828 0.3487 0.3325 0.4331
1.0088 2.3622 15000 1.0236 0.4813 0.3464 0.3315 0.4393
1.0136 2.5197 16000 1.0215 0.4986 0.3432 0.3247 0.4400
1.046 2.6772 17000 1.0194 0.4953 0.3455 0.3306 0.4412
1.0133 2.8346 18000 1.0202 0.4843 0.3488 0.3342 0.4428
1.0096 2.9921 19000 1.0189 0.4915 0.3478 0.3319 0.4338
0.9948 3.1496 20000 1.0146 0.4964 0.3487 0.3292 0.4358
1.0041 3.3071 21000 1.0174 0.4640 0.3510 0.3390 0.4335
1.0039 3.4646 22000 1.0211 0.4621 0.3493 0.3347 0.4304
1.0286 3.6220 23000 1.0127 0.5012 0.3484 0.3312 0.4398
1.0068 3.7795 24000 1.0183 0.5036 0.3451 0.3298 0.4475
1.0082 3.9370 25000 1.0128 0.4801 0.3513 0.3361 0.4377
1.0013 4.0945 26000 1.0219 0.4976 0.3470 0.3375 0.4465
1.0045 4.2520 27000 1.0123 0.5015 0.3493 0.3360 0.4447
1.0051 4.4094 28000 1.0128 0.5018 0.3488 0.3346 0.4453
1.0176 4.5669 29000 1.0135 0.4759 0.3520 0.3349 0.4357
1.0002 4.7244 30000 1.0109 0.4927 0.3484 0.3329 0.4439
0.9972 4.8819 31000 1.0143 0.4823 0.3517 0.3382 0.4337
0.9907 5.0394 32000 1.0096 0.4955 0.3507 0.3371 0.4433
0.9546 5.1969 33000 1.0099 0.4847 0.3586 0.3497 0.4420
0.9973 5.3543 34000 1.0100 0.4911 0.3494 0.3327 0.4426
0.9939 5.5118 35000 1.0267 0.4651 0.3511 0.3322 0.4220
0.9915 5.6693 36000 1.0078 0.4861 0.3553 0.3464 0.4452
1.0101 5.8268 37000 1.0070 0.4952 0.3552 0.3441 0.4441
0.9869 5.9843 38000 1.0076 0.4970 0.3547 0.3434 0.4447
0.9797 6.1417 39000 1.0063 0.4946 0.3520 0.3351 0.4430
0.9783 6.2992 40000 1.0114 0.4984 0.3542 0.3445 0.4484
1.0314 6.4567 41000 1.0059 0.4927 0.3521 0.3369 0.4414
0.9764 6.6142 42000 1.0049 0.4976 0.3520 0.3364 0.4438
0.9762 6.7717 43000 1.0056 0.4935 0.3539 0.3425 0.4456
1.0073 6.9291 44000 1.0053 0.4774 0.3546 0.3419 0.4395
0.9764 7.0866 45000 1.0054 0.4871 0.3547 0.3401 0.4398
0.9795 7.2441 46000 1.0066 0.4928 0.3562 0.3458 0.4456
0.9707 7.4016 47000 1.0039 0.4905 0.3544 0.3418 0.4434
0.9681 7.5591 48000 1.0042 0.4873 0.3532 0.3381 0.4441
0.982 7.7165 49000 1.0035 0.4870 0.3539 0.3374 0.4412
0.9967 7.8740 50000 1.0040 0.4762 0.3565 0.3464 0.4437
0.9871 8.0315 51000 1.0075 0.5050 0.3523 0.3406 0.4480
0.9654 8.1890 52000 1.0038 0.4956 0.3518 0.3358 0.4439
0.9897 8.3465 53000 1.0035 0.4970 0.3512 0.3366 0.4440
0.9958 8.5039 54000 1.0069 0.4961 0.3536 0.3415 0.4478
0.9969 8.6614 55000 1.0033 0.4897 0.3542 0.3413 0.4456
0.9899 8.8189 56000 1.0023 0.4847 0.3542 0.3409 0.4426
0.9766 8.9764 57000 1.0051 0.4963 0.3546 0.3438 0.4481
0.9827 9.1339 58000 1.0031 0.4867 0.3557 0.3425 0.4404
0.9878 9.2913 59000 1.0029 0.4958 0.3536 0.3411 0.4460
0.966 9.4488 60000 1.0020 0.4943 0.3547 0.3409 0.4456
0.9769 9.6063 61000 1.0022 0.4913 0.3555 0.3435 0.4449
0.9808 9.7638 62000 1.0019 0.4926 0.3553 0.3406 0.4424
0.9934 9.9213 63000 1.0015 0.4921 0.3553 0.3419 0.4442

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
326M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .