bge_large_ja_llama3_70
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0015
- Precision: 0.4921
- Recall: 0.3553
- F1 Macro: 0.3419
- Accuracy: 0.4442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 256
- eval_batch_size: 128
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 11.2074 | 0.0112 | 0.1667 | 0.0210 | 0.0673 |
1.1011 | 0.1575 | 1000 | 1.1103 | 0.4472 | 0.3212 | 0.3124 | 0.4230 |
1.0928 | 0.3150 | 2000 | 1.0853 | 0.4367 | 0.3324 | 0.3258 | 0.4117 |
1.0651 | 0.4724 | 3000 | 1.0764 | 0.4678 | 0.3383 | 0.3363 | 0.4380 |
1.0585 | 0.6299 | 4000 | 1.0546 | 0.4620 | 0.3380 | 0.3232 | 0.4267 |
1.0513 | 0.7874 | 5000 | 1.0633 | 0.4558 | 0.3414 | 0.3283 | 0.4138 |
1.0411 | 0.9449 | 6000 | 1.0415 | 0.4700 | 0.3430 | 0.3296 | 0.4334 |
1.0391 | 1.1024 | 7000 | 1.0445 | 0.4852 | 0.3415 | 0.3220 | 0.4227 |
1.0373 | 1.2598 | 8000 | 1.0378 | 0.4815 | 0.3483 | 0.3342 | 0.4330 |
1.039 | 1.4173 | 9000 | 1.0394 | 0.4762 | 0.3432 | 0.3273 | 0.4265 |
1.0408 | 1.5748 | 10000 | 1.0313 | 0.4992 | 0.3416 | 0.3253 | 0.4375 |
1.0274 | 1.7323 | 11000 | 1.0287 | 0.4959 | 0.3429 | 0.3265 | 0.4350 |
1.0296 | 1.8898 | 12000 | 1.0346 | 0.4822 | 0.3450 | 0.3278 | 0.4257 |
1.0404 | 2.0472 | 13000 | 1.0310 | 0.4844 | 0.3456 | 0.3349 | 0.4433 |
1.0194 | 2.2047 | 14000 | 1.0234 | 0.4828 | 0.3487 | 0.3325 | 0.4331 |
1.0088 | 2.3622 | 15000 | 1.0236 | 0.4813 | 0.3464 | 0.3315 | 0.4393 |
1.0136 | 2.5197 | 16000 | 1.0215 | 0.4986 | 0.3432 | 0.3247 | 0.4400 |
1.046 | 2.6772 | 17000 | 1.0194 | 0.4953 | 0.3455 | 0.3306 | 0.4412 |
1.0133 | 2.8346 | 18000 | 1.0202 | 0.4843 | 0.3488 | 0.3342 | 0.4428 |
1.0096 | 2.9921 | 19000 | 1.0189 | 0.4915 | 0.3478 | 0.3319 | 0.4338 |
0.9948 | 3.1496 | 20000 | 1.0146 | 0.4964 | 0.3487 | 0.3292 | 0.4358 |
1.0041 | 3.3071 | 21000 | 1.0174 | 0.4640 | 0.3510 | 0.3390 | 0.4335 |
1.0039 | 3.4646 | 22000 | 1.0211 | 0.4621 | 0.3493 | 0.3347 | 0.4304 |
1.0286 | 3.6220 | 23000 | 1.0127 | 0.5012 | 0.3484 | 0.3312 | 0.4398 |
1.0068 | 3.7795 | 24000 | 1.0183 | 0.5036 | 0.3451 | 0.3298 | 0.4475 |
1.0082 | 3.9370 | 25000 | 1.0128 | 0.4801 | 0.3513 | 0.3361 | 0.4377 |
1.0013 | 4.0945 | 26000 | 1.0219 | 0.4976 | 0.3470 | 0.3375 | 0.4465 |
1.0045 | 4.2520 | 27000 | 1.0123 | 0.5015 | 0.3493 | 0.3360 | 0.4447 |
1.0051 | 4.4094 | 28000 | 1.0128 | 0.5018 | 0.3488 | 0.3346 | 0.4453 |
1.0176 | 4.5669 | 29000 | 1.0135 | 0.4759 | 0.3520 | 0.3349 | 0.4357 |
1.0002 | 4.7244 | 30000 | 1.0109 | 0.4927 | 0.3484 | 0.3329 | 0.4439 |
0.9972 | 4.8819 | 31000 | 1.0143 | 0.4823 | 0.3517 | 0.3382 | 0.4337 |
0.9907 | 5.0394 | 32000 | 1.0096 | 0.4955 | 0.3507 | 0.3371 | 0.4433 |
0.9546 | 5.1969 | 33000 | 1.0099 | 0.4847 | 0.3586 | 0.3497 | 0.4420 |
0.9973 | 5.3543 | 34000 | 1.0100 | 0.4911 | 0.3494 | 0.3327 | 0.4426 |
0.9939 | 5.5118 | 35000 | 1.0267 | 0.4651 | 0.3511 | 0.3322 | 0.4220 |
0.9915 | 5.6693 | 36000 | 1.0078 | 0.4861 | 0.3553 | 0.3464 | 0.4452 |
1.0101 | 5.8268 | 37000 | 1.0070 | 0.4952 | 0.3552 | 0.3441 | 0.4441 |
0.9869 | 5.9843 | 38000 | 1.0076 | 0.4970 | 0.3547 | 0.3434 | 0.4447 |
0.9797 | 6.1417 | 39000 | 1.0063 | 0.4946 | 0.3520 | 0.3351 | 0.4430 |
0.9783 | 6.2992 | 40000 | 1.0114 | 0.4984 | 0.3542 | 0.3445 | 0.4484 |
1.0314 | 6.4567 | 41000 | 1.0059 | 0.4927 | 0.3521 | 0.3369 | 0.4414 |
0.9764 | 6.6142 | 42000 | 1.0049 | 0.4976 | 0.3520 | 0.3364 | 0.4438 |
0.9762 | 6.7717 | 43000 | 1.0056 | 0.4935 | 0.3539 | 0.3425 | 0.4456 |
1.0073 | 6.9291 | 44000 | 1.0053 | 0.4774 | 0.3546 | 0.3419 | 0.4395 |
0.9764 | 7.0866 | 45000 | 1.0054 | 0.4871 | 0.3547 | 0.3401 | 0.4398 |
0.9795 | 7.2441 | 46000 | 1.0066 | 0.4928 | 0.3562 | 0.3458 | 0.4456 |
0.9707 | 7.4016 | 47000 | 1.0039 | 0.4905 | 0.3544 | 0.3418 | 0.4434 |
0.9681 | 7.5591 | 48000 | 1.0042 | 0.4873 | 0.3532 | 0.3381 | 0.4441 |
0.982 | 7.7165 | 49000 | 1.0035 | 0.4870 | 0.3539 | 0.3374 | 0.4412 |
0.9967 | 7.8740 | 50000 | 1.0040 | 0.4762 | 0.3565 | 0.3464 | 0.4437 |
0.9871 | 8.0315 | 51000 | 1.0075 | 0.5050 | 0.3523 | 0.3406 | 0.4480 |
0.9654 | 8.1890 | 52000 | 1.0038 | 0.4956 | 0.3518 | 0.3358 | 0.4439 |
0.9897 | 8.3465 | 53000 | 1.0035 | 0.4970 | 0.3512 | 0.3366 | 0.4440 |
0.9958 | 8.5039 | 54000 | 1.0069 | 0.4961 | 0.3536 | 0.3415 | 0.4478 |
0.9969 | 8.6614 | 55000 | 1.0033 | 0.4897 | 0.3542 | 0.3413 | 0.4456 |
0.9899 | 8.8189 | 56000 | 1.0023 | 0.4847 | 0.3542 | 0.3409 | 0.4426 |
0.9766 | 8.9764 | 57000 | 1.0051 | 0.4963 | 0.3546 | 0.3438 | 0.4481 |
0.9827 | 9.1339 | 58000 | 1.0031 | 0.4867 | 0.3557 | 0.3425 | 0.4404 |
0.9878 | 9.2913 | 59000 | 1.0029 | 0.4958 | 0.3536 | 0.3411 | 0.4460 |
0.966 | 9.4488 | 60000 | 1.0020 | 0.4943 | 0.3547 | 0.3409 | 0.4456 |
0.9769 | 9.6063 | 61000 | 1.0022 | 0.4913 | 0.3555 | 0.3435 | 0.4449 |
0.9808 | 9.7638 | 62000 | 1.0019 | 0.4926 | 0.3553 | 0.3406 | 0.4424 |
0.9934 | 9.9213 | 63000 | 1.0015 | 0.4921 | 0.3553 | 0.3419 | 0.4442 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3