Edit model card

snowflake_regression_median_jury

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2409
  • Precision: 0.5609
  • Recall: 0.4528
  • F1 Macro: 0.4871
  • Accuracy: 0.7168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 256
  • eval_batch_size: 128
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 2.3718 0.0203 0.1667 0.0362 0.1218
0.317 0.6083 1000 0.3110 0.5319 0.3796 0.3943 0.6505
0.2936 1.2165 2000 0.2929 0.5361 0.3816 0.4072 0.6679
0.2828 1.8248 3000 0.2868 0.5345 0.4062 0.4325 0.6714
0.2746 2.4331 4000 0.2696 0.5451 0.4118 0.4456 0.6951
0.2715 3.0414 5000 0.2702 0.5283 0.4252 0.4526 0.6949
0.266 3.6496 6000 0.2638 0.5442 0.4292 0.4586 0.6950
0.2578 4.2579 7000 0.2566 0.5483 0.4391 0.4711 0.7042
0.2501 4.8662 8000 0.2548 0.5516 0.4396 0.4723 0.7040
0.2517 5.4745 9000 0.2516 0.5561 0.4362 0.4707 0.7084
0.2468 6.0827 10000 0.2517 0.5678 0.4206 0.4558 0.7111
0.2469 6.6910 11000 0.2487 0.5527 0.4408 0.4745 0.7109
0.2437 7.2993 12000 0.2482 0.5666 0.4296 0.4673 0.7120
0.2387 7.9075 13000 0.2474 0.5627 0.4378 0.4735 0.7107
0.2425 8.5158 14000 0.2468 0.5600 0.4390 0.4744 0.7142
0.2376 9.1241 15000 0.2449 0.5579 0.4458 0.4807 0.7145
0.2376 9.7324 16000 0.2451 0.5614 0.4426 0.4777 0.7165
0.2365 10.3406 17000 0.2439 0.5635 0.4430 0.4795 0.7164
0.2291 10.9489 18000 0.2441 0.5619 0.4512 0.4852 0.7148
0.2339 11.5572 19000 0.2430 0.5636 0.4479 0.4832 0.7173
0.2305 12.1655 20000 0.2427 0.5619 0.4458 0.4814 0.7168
0.2308 12.7737 21000 0.2431 0.5670 0.4489 0.4852 0.7179
0.2289 13.3820 22000 0.2432 0.5568 0.4587 0.4907 0.7157
0.225 13.9903 23000 0.2446 0.5630 0.4438 0.4785 0.7174
0.2272 14.5985 24000 0.2424 0.5561 0.4554 0.4883 0.7166
0.227 15.2068 25000 0.2421 0.5620 0.4476 0.4834 0.7161
0.2261 15.8151 26000 0.2413 0.5630 0.4516 0.4864 0.7175
0.2213 16.4234 27000 0.2417 0.5570 0.4543 0.4878 0.7171
0.2207 17.0316 28000 0.2415 0.5684 0.4477 0.4838 0.7170
0.228 17.6399 29000 0.2414 0.5613 0.4546 0.4888 0.7167
0.221 18.2482 30000 0.2413 0.5594 0.4525 0.4868 0.7169
0.2198 18.8564 31000 0.2411 0.5641 0.4516 0.4867 0.7175
0.2213 19.4647 32000 0.2409 0.5609 0.4528 0.4871 0.7168

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.