|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lilt-ruroberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lilt-ruroberta |
|
|
|
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2043 |
|
- Comment: {'precision': 1.0, 'recall': 0.9444444444444444, 'f1': 0.9714285714285714, 'number': 18} |
|
- Date: {'precision': 0.8571428571428571, 'recall': 0.75, 'f1': 0.7999999999999999, 'number': 8} |
|
- Labname: {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 5} |
|
- Laboratory: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} |
|
- Measure: {'precision': 1.0, 'recall': 0.9230769230769231, 'f1': 0.9600000000000001, 'number': 13} |
|
- Ref Value: {'precision': 0.875, 'recall': 1.0, 'f1': 0.9333333333333333, 'number': 14} |
|
- Result: {'precision': 1.0, 'recall': 0.9285714285714286, 'f1': 0.962962962962963, 'number': 14} |
|
- Overall Precision: 0.9296 |
|
- Overall Recall: 0.8919 |
|
- Overall F1: 0.9103 |
|
- Overall Accuracy: 0.9563 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Comment | Date | Labname | Laboratory | Measure | Ref Value | Result | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 1.2584 | 5.0 | 5 | 0.9810 | {'precision': 1.0, 'recall': 0.05555555555555555, 'f1': 0.10526315789473684, 'number': 18} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.6666666666666666, 'recall': 0.3076923076923077, 'f1': 0.42105263157894735, 'number': 13} | {'precision': 0.5714285714285714, 'recall': 0.2857142857142857, 'f1': 0.38095238095238093, 'number': 14} | {'precision': 0.4482758620689655, 'recall': 0.9285714285714286, 'f1': 0.6046511627906977, 'number': 14} | 0.44 | 0.2973 | 0.3548 | 0.7125 | |
|
| 0.6614 | 10.0 | 10 | 0.5382 | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.8333333333333334, 'recall': 0.38461538461538464, 'f1': 0.5263157894736842, 'number': 13} | {'precision': 0.8125, 'recall': 0.9285714285714286, 'f1': 0.8666666666666666, 'number': 14} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | 0.8475 | 0.6757 | 0.7519 | 0.9 | |
|
| 0.3955 | 15.0 | 15 | 0.3360 | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.8333333333333334, 'recall': 0.38461538461538464, 'f1': 0.5263157894736842, 'number': 13} | {'precision': 0.8125, 'recall': 0.9285714285714286, 'f1': 0.8666666666666666, 'number': 14} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | 0.8475 | 0.6757 | 0.7519 | 0.9 | |
|
| 0.2654 | 20.0 | 20 | 0.2405 | {'precision': 1.0, 'recall': 0.8888888888888888, 'f1': 0.9411764705882353, 'number': 18} | {'precision': 0.8571428571428571, 'recall': 0.75, 'f1': 0.7999999999999999, 'number': 8} | {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 1.0, 'recall': 0.9230769230769231, 'f1': 0.9600000000000001, 'number': 13} | {'precision': 0.875, 'recall': 1.0, 'f1': 0.9333333333333333, 'number': 14} | {'precision': 0.9285714285714286, 'recall': 0.9285714285714286, 'f1': 0.9285714285714286, 'number': 14} | 0.9155 | 0.8784 | 0.8966 | 0.95 | |
|
| 0.2125 | 25.0 | 25 | 0.2043 | {'precision': 1.0, 'recall': 0.9444444444444444, 'f1': 0.9714285714285714, 'number': 18} | {'precision': 0.8571428571428571, 'recall': 0.75, 'f1': 0.7999999999999999, 'number': 8} | {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 1.0, 'recall': 0.9230769230769231, 'f1': 0.9600000000000001, 'number': 13} | {'precision': 0.875, 'recall': 1.0, 'f1': 0.9333333333333333, 'number': 14} | {'precision': 1.0, 'recall': 0.9285714285714286, 'f1': 0.962962962962963, 'number': 14} | 0.9296 | 0.8919 | 0.9103 | 0.9563 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|