multi_home_ner_best_model

#1
by NBoukachab - opened
Files changed (12) hide show
  1. .gitattributes +1 -0
  2. README.md +57 -0
  3. meta.json +50 -0
  4. ner/cfg +18 -0
  5. ner/model +3 -0
  6. ner/moves +1 -0
  7. tokenizer +3 -0
  8. vocab/key2row +1 -0
  9. vocab/lookups.bin +3 -0
  10. vocab/lookups_extra.bin +3 -0
  11. vocab/strings.json +0 -0
  12. vocab/vectors +0 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ model filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,60 @@
1
  ---
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: Spacy
3
  license: mit
4
+ tags:
5
+ - Spacy
6
+ - Named entity recognition
7
+ metrics:
8
+ - P
9
+ - R
10
+ - F1
11
+ language:
12
+ - 'la'
13
+ - 'de'
14
+ - 'cs'
15
+ ​version:
16
+ - 'Spacy v2'
17
  ---
18
+
19
+ # HOME-NACR Named entity recognition
20
+
21
+ This model detects Person and Location entities in Latin, Czech and German.
22
+
23
+ ## Model description
24
+
25
+ The model has been trained using the Spacy v2 library on the HOME-NACR document annotations. The model is compatible with version 2.3.2 of Spacy and incompatible with versions 3.x.x.
26
+
27
+ ## Evaluation results
28
+
29
+ The model achieves the following results on HOME-NACR:
30
+
31
+ | tag | predicted | matched | Precision | Recall | F1 | Support |
32
+ | ---- | --------- | ------- | --------- | ------ | ----- | ------- |
33
+ | PERS | 28276 | 28006 | 0.99 | 0.997 | 0.994 | 28087 |
34
+ | LOC | 27541 | 27165 | 0.986 | 0.987 | 0.987 | 27528 |
35
+ | All | 55817 | 55171 | 0.988 | 0.992 | 0.990 | 55615 |
36
+
37
+ ## How to use
38
+
39
+ Please refer to the Spacy library page (https://pypi.org/project/spacy/2.3.2/) to use this model.
40
+
41
+ # Cite us!
42
+
43
+ ```bibtex
44
+ @inproceedings{10.1007/978-3-031-06555-2_29,
45
+ author = {Monroc, Claire Bizon and Miret, Blanche and Bonhomme, Marie-Laurence and Kermorvant, Christopher},
46
+ title = {A Comprehensive Study Of Open-Source Libraries For Named Entity Recognition On Handwritten Historical Documents},
47
+ year = {2022},
48
+ isbn = {978-3-031-06554-5},
49
+ publisher = {Springer-Verlag},
50
+ address = {Berlin, Heidelberg},
51
+ url = {https://doi.org/10.1007/978-3-031-06555-2_29},
52
+ doi = {10.1007/978-3-031-06555-2_29},
53
+ abstract = {In this paper, we propose an evaluation of several state-of-the-art open-source natural language processing (NLP) libraries for named entity recognition (NER) on handwritten historical documents: spaCy, Stanza and Flair. The comparison is carried out on three low-resource multilingual datasets of handwritten historical documents: HOME (a multilingual corpus of medieval charters), Balsac (a corpus of parish records from Quebec), and Esposalles (a corpus of marriage records in Catalan). We study the impact of the document recognition processes (text line detection and handwriting recognition) on the performance of the NER. We show that current off-the-shelf NER libraries yield state-of-the-art results, even on low-resource languages or multilingual documents using multilingual models. We show, in an end-to-end evaluation, that text line detection errors have a greater impact than handwriting recognition errors. Finally, we also report state-of-the-art results on the public Esposalles dataset.},
54
+ booktitle = {Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings},
55
+ pages = {429–444},
56
+ numpages = {16},
57
+ keywords = {Text line detection, Named entity recognition, Handwritten historical documents},
58
+ location = {La Rochelle, France}
59
+ }
60
+ ```
meta.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "lang":"xx",
3
+ "pipeline":[
4
+ "ner"
5
+ ],
6
+ "spacy_version":">=2.3.2<3.0",
7
+ "speed":{
8
+ "nwords":22118,
9
+ "cpu":14078.2482701708,
10
+ "gpu":36967.2712529745
11
+ },
12
+ "accuracy":{
13
+ "ents_f":81.7114729269,
14
+ "ents_p":82.5554705432,
15
+ "ents_r":80.8845577211,
16
+ "ents_per_type":{
17
+ "LOC":{
18
+ "p":93.4687953556,
19
+ "r":87.027027027,
20
+ "f":90.132960112
21
+ },
22
+ "PER":{
23
+ "p":71.1538461538,
24
+ "r":74.0,
25
+ "f":72.5490196078
26
+ },
27
+ "DAT":{
28
+ "p":60.8695652174,
29
+ "r":63.6363636364,
30
+ "f":62.2222222222
31
+ }
32
+ },
33
+ "token_acc":100.0
34
+ },
35
+ "vectors":{
36
+ "width":0,
37
+ "vectors":0,
38
+ "keys":0,
39
+ "name":"spacy_pretrained_vectors"
40
+ },
41
+ "name":"model0",
42
+ "version":"0.0.0",
43
+ "labels":{
44
+ "ner":[
45
+ "DAT",
46
+ "LOC",
47
+ "PER"
48
+ ]
49
+ }
50
+ }
ner/cfg ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "beam_width":1,
3
+ "beam_density":0.0,
4
+ "beam_update_prob":1.0,
5
+ "cnn_maxout_pieces":3,
6
+ "nr_feature_tokens":6,
7
+ "nr_class":14,
8
+ "hidden_depth":1,
9
+ "token_vector_width":96,
10
+ "hidden_width":64,
11
+ "maxout_pieces":2,
12
+ "pretrained_vectors":null,
13
+ "bilstm_depth":0,
14
+ "self_attn_depth":0,
15
+ "conv_depth":4,
16
+ "conv_window":1,
17
+ "embed_size":2000
18
+ }
ner/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee65d68d5bb156c356a8119edbffd29a8c64d7484d0308f27a6ab3e64aaeafdd
3
+ size 4004808
ner/moves ADDED
@@ -0,0 +1 @@
 
 
1
+ ��movesٸ{"0":{},"1":{"PER":11554,"DAT":5976,"LOC":5662},"2":{"PER":11554,"DAT":5976,"LOC":5662},"3":{"PER":11554,"DAT":5976,"LOC":5662},"4":{"PER":11554,"DAT":5976,"LOC":5662,"":1},"5":{"":1}}
tokenizer ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ��prefix_search��^§|^%|^=|^—|^–|^\+(?![0-9])|^…|^……|^,|^:|^;|^\!|^\?|^¿|^؟|^¡|^\(|^\)|^\[|^\]|^\{|^\}|^<|^>|^_|^#|^\*|^&|^。|^?|^!|^,|^、|^;|^:|^~|^·|^।|^،|^۔|^؛|^٪|^\.\.+|^…|^\'|^"|^”|^“|^`|^‘|^´|^’|^‚|^,|^„|^»|^«|^「|^」|^『|^』|^(|^)|^〔|^〕|^【|^】|^《|^》|^〈|^〉|^\$|^£|^€|^¥|^฿|^US\$|^C\$|^A\$|^₽|^﷼|^₴|^[¦©®°҂֍֎؎؏۞۩۽۾߶৺୰௳-௸௺౿൏൹༁-༃༓༕-༗༚-༟༴༶༸྾-࿅࿇-࿌࿎࿏࿕-࿘႞႟᎐-᎙᥀᧞-᧿᭡-᭪᭴-᭼℀℁℃-℆℈℉℔№℗℞-℣℥℧℩℮℺℻⅊⅌⅍⅏↊↋↕-↙↜-↟↡↢↤↥↧-↭↯-⇍⇐⇑⇓⇕-⇳⌀-⌇⌌-⌟⌢-⌨⌫-⍻⍽-⎚⎴-⏛⏢-␦⑀-⑊⒜-ⓩ─-▶▸-◀◂-◷☀-♮♰-❧➔-➿⠀-⣿⬀-⬯⭅⭆⭍-⭳⭶-⮕⮘-⯈⯊-⯾⳥-⳪⺀-⺙⺛-⻳⼀-⿕⿰-⿻〄〒〓〠〶〷〾〿㆐㆑㆖-㆟㇀-㇣㈀-㈞㈪-㉇㉐㉠-㉿㊊-㊰㋀-㋾㌀-㏿䷀-䷿꒐-꓆꠨-꠫꠶꠷꠹꩷-꩹﷽¦│■○�𐄷-𐄿𐅹-𐆉𐆌-𐆎𐆐-𐆛𐆠𐇐-𐇼𐡷𐡸𐫈𑜿𖬼-𖬿𖭅𛲜𝀀-𝃵𝄀-𝄦𝄩-𝅘𝅥𝅲𝅪-𝅬𝆃𝆄𝆌-𝆩𝆮-𝇨𝈀-𝉁𝉅𝌀-𝍖𝠀-𝧿𝨷-𝨺𝩭-𝩴𝩶-𝪃𝪅𝪆𞲬🀀-🀫🀰-🂓🂠-🂮🂱-🂿🃁-🃏🃑-🃵🄐-🅫🅰-🆬🇦-🈂🈐-🈻🉀-🉈🉐🉑🉠-🉥🌀-🏺🐀-🛔🛠-🛬🛰-🛹🜀-🝳🞀-🟘🠀-🠋🠐-🡇🡐-🡙🡠-🢇🢐-🢭🤀-🤋🤐-🤾🥀-🥰🥳-🥶🥺🥼-🦢🦰-🦹🧀-🧂🧐-🧿🩠-🩭]�suffix_search��…$|……$|,$|:$|;$|\!$|\?$|¿$|؟$|¡$|\($|\)$|\[$|\]$|\{$|\}$|<$|>$|_$|#$|\*$|&$|。$|?$|!$|,$|、$|;$|:$|~$|·$|।$|،$|۔$|؛$|٪$|\.\.+$|…$|\'$|"$|”$|“$|`$|‘$|´$|’$|‚$|,$|„$|»$|«$|「$|」$|『$|』$|($|)$|〔$|〕$|【$|】$|《$|》$|〈$|〉$|[¦©®°҂֍֎؎؏۞۩۽۾߶৺୰௳-௸௺౿൏൹༁-༃༓༕-༗༚-༟༴༶༸྾-࿅࿇-࿌࿎࿏࿕-࿘႞႟᎐-᎙᥀᧞-᧿᭡-᭪᭴-᭼℀℁℃-℆℈℉℔№℗℞-℣℥℧℩℮℺℻⅊⅌⅍⅏↊↋↕-↙↜-↟↡↢↤↥↧-↭↯-⇍⇐⇑⇓⇕-⇳⌀-⌇⌌-⌟⌢-⌨⌫-⍻⍽-⎚⎴-⏛⏢-␦⑀-⑊⒜-ⓩ─-▶▸-◀◂-◷☀-♮♰-❧➔-➿⠀-⣿⬀-⬯⭅⭆⭍-⭳⭶-⮕⮘-⯈⯊-⯾⳥-⳪⺀-⺙⺛-⻳⼀-⿕⿰-⿻〄〒〓〠〶〷〾〿㆐㆑㆖-㆟㇀-㇣㈀-㈞㈪-㉇㉐㉠-㉿㊊-㊰㋀-㋾㌀-㏿䷀-䷿꒐-꓆꠨-꠫꠶꠷꠹꩷-꩹﷽¦│■○�𐄷-𐄿𐅹-𐆉𐆌-𐆎𐆐-𐆛𐆠𐇐-𐇼𐡷𐡸𐫈𑜿𖬼-𖬿𖭅𛲜𝀀-𝃵𝄀-𝄦𝄩-𝅘𝅥𝅲𝅪-𝅬𝆃𝆄𝆌-𝆩𝆮-𝇨𝈀-𝉁𝉅𝌀-𝍖𝠀-𝧿𝨷-𝨺𝩭-𝩴𝩶-𝪃𝪅𝪆𞲬🀀-🀫🀰-🂓🂠-🂮🂱-🂿🃁-🃏🃑-🃵🄐-🅫🅰-🆬🇦-🈂🈐-🈻🉀-🉈🉐🉑🉠-🉥🌀-🏺🐀-🛔🛠-🛬🛰-🛹🜀-🝳🞀-🟘🠀-🠋🠐-🡇🡐-🡙🡠-🢇🢐-🢭🤀-🤋🤐-🤾🥀-🥰🥳-🥶🥺🥼-🦢🦰-🦹🧀-🧂🧐-🧿🩠-🩭]$|'s$|'S$|’s$|’S$|—$|–$|(?<=[0-9])\+$|(?<=°[FfCcKk])\.$|(?<=[0-9])(?:\$|£|€|¥|฿|US\$|C\$|A\$|₽|﷼|₴)$|(?<=[0-9])(?:km|km²|km³|m|m²|m³|dm|dm²|dm³|cm|cm²|cm³|mm|mm²|mm³|ha|µm|nm|yd|in|ft|kg|g|mg|µg|t|lb|oz|m/s|km/h|kmh|mph|hPa|Pa|mbar|mb|MB|kb|KB|gb|GB|tb|TB|T|G|M|K|%|км|км²|км³|м|м²|м³|дм|дм²|дм³|см|см²|см³|мм|мм²|мм³|нм|кг|г|мг|м/с|км/ч|кПа|Па|мбар|Кб|КБ|кб|Мб|МБ|мб|Гб|ГБ|гб|Тб|ТБ|тбكم|كم²|كم³|م|م²|م³|سم|سم²|سم³|مم|مم²|مم³|كم|غرام|جرام|جم|كغ|ملغ|كوب|اكواب)$|(?<=[0-9a-za-zß-öø-ÿāăąćĉċčďđēĕėęěĝğġģĥħĩīĭįıijĵķĸĺļľŀłńņňʼnŋōŏőœŕŗřśŝşšţťŧũūŭůűųŵŷźżžſƀƃƅƈƌƍƒƕƙ-ƛƞơƣƥƨƪƫƭưƴƶƹƺƽ-ƿdžljnjǎǐǒǔǖǘǚǜǝǟǡǣǥǧǩǫǭǯǰdzǵǹǻǽǿȁȃȅȇȉȋȍȏȑȓȕȗșțȝȟȡȣȥȧȩȫȭȯȱȳ-ȹȼȿɀɂɇɉɋɍɏⱡⱥⱦⱨⱪⱬⱱⱳⱴⱶ-ⱻꜣꜥꜧꜩꜫꜭꜯ-ꜱꜳꜵꜷꜹꜻꜽꜿꝁꝃꝅꝇꝉꝋꝍꝏꝑꝓꝕꝗꝙꝛꝝꝟꝡꝣꝥꝧꝩꝫꝭꝯꝱ-ꝸꝺꝼꝿꞁꞃꞅꞇꞌꞎꞑꞓ-ꞕꞗꞙꞛꞝꞟꞡꞣꞥꞧꞩꞯꞵꞷꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḁḃḅḇḉḋḍḏḑḓḕḗḙḛḝḟḡḣḥḧḩḫḭḯḱḳḵḷḹḻḽḿṁṃṅṇṉṋṍṏṑṓṕṗṙṛṝṟṡṣṥṧṩṫṭṯṱṳṵṷṹṻṽṿẁẃẅẇẉẋẍẏẑẓẕ-ẝẟạảấầẩẫậắằẳẵặẹẻẽếềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹỻỽỿёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟%²\-\+…|……|,|:|;|\!|\?|¿|؟|¡|\(|\)|\[|\]|\{|\}|<|>|_|#|\*|&|。|?|!|,|、|;|:|~|·|।|،|۔|؛|٪(?:\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉)])\.$|(?<=[A-ZA-ZÀ-ÖØ-ÞĀĂĄĆĈĊČĎĐĒĔĖĘĚĜĞĠĢĤĦĨĪĬĮİIJĴĶĹĻĽĿŁŃŅŇŊŌŎŐŒŔŖŘŚŜŞŠŢŤŦŨŪŬŮŰŲŴŶŸŹŻŽƁƂƄƆƇƉ-ƋƎ-ƑƓƔƖ-ƘƜƝƟƠƢƤƦƧƩƬƮƯƱ-ƳƵƷƸƼDŽLJNJǍǏǑǓǕǗǙǛǞǠǢǤǦǨǪǬǮDZǴǶ-ǸǺǼǾȀȂȄȆȈȊȌȎȐȒȔȖȘȚȜȞȠȢȤȦȨȪȬȮȰȲȺȻȽȾɁɃ-ɆɈɊɌɎⱠⱢ-ⱤⱧⱩⱫⱭ-ⱰⱲⱵⱾⱿꜢꜤꜦꜨꜪꜬꜮꜲꜴꜶꜸꜺꜼꜾꝀꝂꝄꝆꝈꝊꝌꝎꝐꝒꝔꝖꝘꝚꝜꝞꝠꝢꝤꝦꝨꝪꝬꝮꝹꝻꝽꝾꞀꞂꞄꞆꞋꞍꞐꞒꞖꞘꞚꞜꞞꞠꞢꞤꞦꞨꞪ-ꞮꞰ-ꞴꞶꞸḀḂḄḆḈḊḌḎḐḒḔḖḘḚḜḞḠḢḤḦḨḪḬḮḰḲḴḶḸḺḼḾṀṂṄṆṈṊṌṎṐṒṔṖṘṚṜṞṠṢṤṦṨṪṬṮṰṲṴṶṸṺṼṾẀẂẄẆẈẊẌẎẐẒẔẞẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼẾỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴỶỸỺỼỾЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟][A-ZA-ZÀ-ÖØ-ÞĀĂĄĆĈĊČĎĐĒĔĖĘĚĜĞĠĢĤĦĨĪĬĮİIJĴĶĹĻĽĿŁŃŅŇŊŌŎŐŒŔŖŘŚŜŞŠŢŤŦŨŪŬŮŰŲŴŶŸŹŻŽƁƂƄƆƇƉ-ƋƎ-ƑƓƔƖ-ƘƜƝƟƠƢƤƦƧƩƬƮƯƱ-ƳƵƷƸƼDŽLJNJǍǏǑǓǕǗǙǛǞǠǢǤǦǨǪǬǮDZǴǶ-ǸǺǼǾȀȂȄȆȈȊȌȎȐȒȔȖȘȚȜȞȠȢȤȦȨȪȬȮȰȲȺȻȽȾɁɃ-ɆɈɊɌɎⱠⱢ-ⱤⱧⱩⱫⱭ-ⱰⱲⱵⱾⱿꜢꜤꜦꜨꜪꜬꜮꜲꜴꜶꜸꜺꜼꜾꝀꝂꝄꝆꝈꝊꝌꝎꝐꝒꝔꝖꝘꝚꝜꝞꝠꝢꝤꝦꝨꝪꝬꝮꝹꝻꝽꝾꞀꞂꞄꞆꞋꞍꞐꞒꞖꞘꞚꞜꞞꞠꞢꞤꞦꞨꞪ-ꞮꞰ-ꞴꞶꞸḀḂḄḆḈḊḌḎḐḒḔḖḘḚḜḞḠḢḤḦḨḪḬḮḰḲḴḶḸḺḼḾṀṂṄṆṈṊṌṎṐṒṔṖṘṚṜṞṠṢṤṦṨṪṬṮṰṲṴṶṸṺṼṾẀẂẄẆẈẊẌẎẐẒẔẞẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼẾỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴỶỸỺỼỾЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟])\.$�infix_finditer�s\.\.+|…|[¦©®°҂֍֎؎؏۞۩۽۾߶৺୰௳-௸௺౿൏൹༁-༃༓༕-༗༚-༟༴༶༸྾-࿅࿇-࿌࿎࿏࿕-࿘႞႟᎐-᎙᥀᧞-᧿᭡-᭪᭴-᭼℀℁℃-℆℈℉℔№℗℞-℣℥℧℩℮℺℻⅊⅌⅍⅏↊↋↕-↙↜-↟↡↢↤↥↧-↭↯-⇍⇐⇑⇓⇕-⇳⌀-⌇⌌-⌟⌢-⌨⌫-⍻⍽-⎚⎴-⏛⏢-␦⑀-⑊⒜-ⓩ─-▶▸-◀◂-◷☀-♮♰-❧➔-➿⠀-⣿⬀-⬯⭅⭆⭍-⭳⭶-⮕⮘-⯈⯊-⯾⳥-⳪⺀-⺙⺛-⻳⼀-⿕⿰-⿻〄〒〓〠〶〷〾〿㆐㆑㆖-㆟㇀-㇣㈀-㈞㈪-㉇㉐㉠-㉿㊊-㊰㋀-㋾㌀-㏿䷀-䷿꒐-꓆꠨-꠫꠶꠷꠹꩷-꩹﷽¦│■○�𐄷-𐄿𐅹-𐆉𐆌-𐆎𐆐-𐆛𐆠𐇐-𐇼𐡷𐡸𐫈𑜿𖬼-𖬿𖭅𛲜𝀀-𝃵𝄀-𝄦𝄩-𝅘𝅥𝅲𝅪-𝅬𝆃𝆄𝆌-𝆩𝆮-𝇨𝈀-𝉁𝉅𝌀-𝍖𝠀-𝧿𝨷-𝨺𝩭-𝩴𝩶-𝪃𝪅𝪆𞲬🀀-🀫🀰-🂓🂠-🂮🂱-🂿🃁-🃏🃑-🃵🄐-🅫🅰-🆬🇦-🈂🈐-🈻🉀-🉈🉐🉑🉠-🉥🌀-🏺🐀-🛔🛠-🛬🛰-🛹🜀-🝳🞀-🟘🠀-🠋🠐-🡇🡐-🡙🡠-🢇🢐-🢭🤀-🤋🤐-🤾🥀-🥰🥳-🥶🥺🥼-🦢🦰-🦹🧀-🧂🧐-🧿🩠-🩭]|(?<=[0-9])[+\-\*^](?=[0-9-])|(?<=[a-za-zß-öø-ÿāăąćĉċčďđēĕėęěĝğġģĥħĩīĭįıijĵķĸĺļľŀłńņňʼnŋōŏőœŕŗřśŝşšţťŧũūŭůűųŵŷźżžſƀƃƅƈƌƍƒƕƙ-ƛƞơƣƥƨƪƫƭưƴƶƹƺƽ-ƿdžljnjǎǐǒǔǖǘǚǜǝǟǡǣǥǧǩǫǭǯǰdzǵǹǻǽǿȁȃȅȇȉȋȍȏȑȓȕȗșțȝȟȡȣȥȧȩȫȭȯȱȳ-ȹȼȿɀɂɇɉɋɍɏⱡⱥⱦⱨⱪⱬⱱⱳⱴⱶ-ⱻꜣꜥꜧꜩꜫꜭꜯ-ꜱꜳꜵꜷꜹꜻꜽꜿꝁꝃꝅꝇꝉꝋꝍꝏꝑꝓꝕꝗꝙꝛꝝꝟꝡꝣꝥꝧꝩꝫꝭꝯꝱ-ꝸꝺꝼꝿꞁꞃꞅꞇꞌꞎꞑꞓ-ꞕꞗꞙꞛꞝꞟꞡꞣꞥꞧꞩꞯꞵꞷꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḁḃḅḇḉḋḍḏḑḓḕḗḙḛḝḟḡḣḥḧḩḫḭḯḱḳḵḷḹḻḽḿṁṃṅṇṉṋṍṏṑṓṕṗṙṛṝṟṡṣṥṧṩṫṭṯṱṳṵṷṹṻṽṿẁẃẅẇẉẋẍẏẑẓẕ-ẝẟạảấầẩẫậắằẳẵặẹẻẽếềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹỻỽỿёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉])\.(?=[A-ZA-ZÀ-ÖØ-ÞĀĂĄĆĈĊČĎĐĒĔĖĘĚĜĞĠĢĤĦĨĪĬĮİIJĴĶĹĻĽĿŁŃŅŇŊŌŎŐŒŔŖŘŚŜŞŠŢŤŦŨŪŬŮŰŲŴŶŸŹŻŽƁƂƄƆƇƉ-ƋƎ-ƑƓƔƖ-ƘƜƝƟƠƢƤƦƧƩƬƮƯƱ-ƳƵƷƸƼDŽLJNJǍǏǑǓǕǗǙǛǞǠǢǤǦǨǪǬǮDZǴǶ-ǸǺǼǾȀȂȄȆȈȊȌȎȐȒȔȖȘȚȜȞȠȢȤȦȨȪȬȮȰȲȺȻȽȾɁɃ-ɆɈɊɌɎⱠⱢ-ⱤⱧⱩⱫⱭ-ⱰⱲⱵⱾⱿꜢꜤꜦꜨꜪꜬꜮꜲꜴꜶꜸꜺꜼꜾꝀꝂꝄꝆꝈꝊꝌꝎꝐꝒꝔꝖꝘꝚꝜꝞꝠꝢꝤꝦꝨꝪꝬꝮꝹꝻꝽꝾꞀꞂꞄꞆꞋꞍꞐꞒꞖꞘꞚꞜꞞꞠꞢꞤꞦꞨꞪ-ꞮꞰ-ꞴꞶꞸḀḂḄḆḈḊḌḎḐḒḔḖḘḚḜḞḠḢḤḦḨḪḬḮḰḲḴḶḸḺḼḾṀṂṄṆṈṊṌṎṐṒṔṖṘṚṜṞṠṢṤṦṨṪṬṮṰṲṴṶṸṺṼṾẀẂẄẆẈẊẌẎẐẒẔẞẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼẾỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴỶỸỺỼỾЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉])|(?<=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟]),(?=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟])|(?<=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟])(?:-|–|—|--|---|——|~)(?=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟])|(?<=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟0-9])[:<>=/](?=[A-Za-zA-Za-zÀ-ÖØ-öø-ÿĀ-ſƀ-ƿDŽ-ɏⱠ-ⱻⱾⱿꜢ-ꝯꝱ-ꞇꞋ-ꞎꞐ-ꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḀ-ỿёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώή��Α-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟])�token_match��url_match�(?u)^(?:(?:[\w\+\-\.]{2,})://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[A-Za-z0-9¡-￿][A-Za-z0-9¡-￿_-]{0,62})?[A-Za-z0-9¡-￿]\.)+(?:[a-za-zß-öø-ÿāăąćĉċčďđēĕėęěĝğġģĥħĩīĭįıijĵķĸĺļľŀłńņňʼnŋōŏőœŕŗřśŝşšţťŧũūŭůűųŵŷźżžſƀƃƅƈƌƍƒƕƙ-ƛƞơƣƥƨƪƫƭưƴƶƹƺƽ-ƿdžljnjǎǐǒǔǖǘǚǜǝǟǡǣǥǧǩǫǭǯǰdzǵǹǻǽǿȁȃȅȇȉȋȍȏȑȓȕȗșțȝȟȡȣȥȧȩȫȭȯȱȳ-ȹȼȿɀɂɇɉɋɍɏⱡⱥⱦⱨⱪⱬⱱⱳⱴⱶ-ⱻꜣꜥꜧꜩꜫꜭꜯ-ꜱꜳꜵꜷꜹꜻꜽꜿꝁꝃꝅꝇꝉꝋꝍꝏꝑꝓꝕꝗꝙꝛꝝꝟꝡꝣꝥꝧꝩꝫꝭꝯꝱ-ꝸꝺꝼꝿꞁꞃꞅꞇꞌꞎꞑꞓ-ꞕꞗꞙꞛꞝꞟꞡꞣꞥꞧꞩꞯꞵꞷꞹꟺꬰ-ꭚꭠ-ꭤɐ-ʯᴀ-ᴥᵫ-ᵷᵹ-ᶚḁḃḅḇḉḋḍḏḑḓḕḗḙḛḝḟḡḣḥḧḩḫḭḯḱḳḵḷḹḻḽḿṁṃṅṇṉṋṍṏṑṓṕṗṙṛṝṟṡṣṥṧṩṫṭṯṱṳṵṷṹṻṽṿẁẃẅẇẉẋẍẏẑẓẕ-ẝẟạảấầẩẫậắằẳẵặẹẻẽếềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹỻỽỿёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґঀ-৿֑-״יִ-ﭏؠ-يٮ-ەۥ-ۿݐ-ݿࢠ-ࢽﭐ-ﮱﯓ-ﴽﵐ-ﷇﷰ-ﷻﹰ-ﻼ𞸀-𞺻඀-෿ऀ-ॿಀ-೿஀-௿ఀ-౿가-힯ᄀ-ᇿ一-拿挀-矿砀-賿贀-鿿㐀-䶿𠀀-𡗿𡘀-𣃿𣄀-𤗿𤘀-𦃿𦄀-𧗿𧘀-𩃿𩄀-𪛟𪜀-𫜿𫝀-𫠟𫠠-𬺯𬺰-𮯯⺀-⻿⼀-⿟⿰-⿿ -〿㇀-㇯㈀-㋿㌀-㏿豈-﫿︰-﹏🈀-🋿丽-𯨟]{2,63}))(?::\d{2,5})?(?:[/?#]\S*)?$�exceptions��� ��A� JgK�_SP�
2
+ ��A�
3
+ JgK�_SP� ��A� JgK�_SP�")��A�")�'��A�'�''��A�''�(*_*)��A�(*_*)�(-8��A�(-8�(-:��A�(-:�(-;��A�(-;�(-_-)��A�(-_-)�(._.)��A�(._.)�(:��A�(:�(;��A�(;�(=��A�(=�(>_<)��A�(>_<)�(^_^)��A�(^_^)�(o:��A�(o:�(¬_¬)��A�(¬_¬)�(ಠ_ಠ)��A�(ಠ_ಠ)�(╯°□°)╯︵┻━┻��A�(╯°□°)╯︵┻━┻�)-:��A�)-:�):��A�):�-_-��A�-_-�-__-��A�-__-�._.��A�._.�0.0��A�0.0�0.o��A�0.o�0_0��A�0_0�0_o��A�0_o�8)��A�8)�8-)��A�8-)�8-D��A�8-D�8D��A�8D�:'(��A�:'(�:')��A�:')�:'-(��A�:'-(�:'-)��A�:'-)�:(��A�:(�:((��A�:((�:(((��A�:(((�:()��A�:()�:)��A�:)�:))��A�:))�:)))��A�:)))�:*��A�:*�:-(��A�:-(�:-((��A�:-((�:-(((��A�:-(((�:-)��A�:-)�:-))��A�:-))�:-)))��A�:-)))�:-*��A�:-*�:-/��A�:-/�:-0��A�:-0�:-3��A�:-3�:->��A�:->�:-D��A�:-D�:-O��A�:-O�:-P��A�:-P�:-X��A�:-X�:-]��A�:-]�:-o��A�:-o�:-p��A�:-p�:-x��A�:-x�:-|��A�:-|�:-}��A�:-}�:/��A�:/�:0��A�:0�:1��A�:1�:3��A�:3�:>��A�:>�:D��A�:D�:O��A�:O�:P��A�:P�:X��A�:X�:]��A�:]�:o��A�:o�:o)��A�:o)�:p��A�:p�:x��A�:x�:|��A�:|�:}��A�:}�:’(��A�:’(�:’)��A�:’)�:’-(��A�:’-(�:’-)��A�:’-)�;)��A�;)�;-)��A�;-)�;-D��A�;-D�;D��A�;D�;_;��A�;_;�<.<��A�<.<�</3��A�</3�<3��A�<3�<33��A�<33�<333��A�<333�<space>��A�<space>�=(��A�=(�=)��A�=)�=/��A�=/�=3��A�=3�=D��A�=D�=|��A�=|�>.<��A�>.<�>.>��A�>.>�>:(��A�>:(�>:o��A�>:o�><(((*>��A�><(((*>�@_@��A�@_@�C++��A�C++�O.O��A�O.O�O.o��A�O.o�O_O��A�O_O�O_o��A�O_o�V.V��A�V.V�V_V��A�V_V�XD��A�XD�XDD��A�XDD�[-:��A�[-:�[:��A�[:�\")��A�\")�\n��A�\nJgK�_SP�\t��A�\tJgK�_SP�^_^��A�^_^�^__^��A�^__^�^___^��A�^___^�a.��A�a.�b.��A�b.�c.��A�c.�d.��A�d.�e.��A�e.�f.��A�f.�g.��A�g.�h.��A�h.�i.��A�i.�j.��A�j.�k.��A�k.�l.��A�l.�m.��A�m.�n.��A�n.�o.��A�o.�o.0��A�o.0�o.O��A�o.O�o.o��A�o.o�o_0��A�o_0�o_O��A�o_O�o_o��A�o_o�p.��A�p.�q.��A�q.�r.��A�r.�s.��A�s.�t.��A�t.�u.��A�u.�v.��A�v.�v.v��A�v.v�v_v��A�v_v�w.��A�w.�x.��A�x.�xD��A�xD�xDD��A�xDD�y.��A�y.�z.��A�z.� ��A� JgI� K�_SP�¯\(ツ)/¯��A�¯\(ツ)/¯�ä.��A�ä.�ö.��A�ö.�ü.��A�ü.�ಠ_ಠ��A�ಠ_ಠ�ಠ︵ಠ��A�ಠ︵ಠ�—��A�—�’��A�’�’’��A�’’
vocab/key2row ADDED
@@ -0,0 +1 @@
 
 
1
+
vocab/lookups.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bac7887f37e66e55721c09112b3ccbe56866fe1969146df08fc41cb86a4b18f
3
+ size 14
vocab/lookups_extra.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:479d77559672b791f58e372a4e000da8efb92f443b6964d82684bbe2d324d28b
3
+ size 47
vocab/strings.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab/vectors ADDED
Binary file (128 Bytes). View file