OpenChat v3.2 - GGML
- Model creator: OpenChat
- Original model: OpenChat v3.2
Description
This repo contains GGML format model files for OpenChat's OpenChat v3.2.
GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:
- text-generation-webui, the most popular web UI. Supports NVidia CUDA GPU acceleration.
- KoboldCpp, a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
- LM Studio, a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
- LoLLMS Web UI, a great web UI with CUDA GPU acceleration via the c_transformers backend.
- ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
- llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
Repositories available
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference
- OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: OpenChat
GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
Compatibility
Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0
These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K
These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387
.
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
Explanation of the new k-quant methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
- GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
openchat_v3.2.ggmlv3.q2_K.bin | q2_K | 2 | 5.74 GB | 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
openchat_v3.2.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 7.14 GB | 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
openchat_v3.2.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.53 GB | 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
openchat_v3.2.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.87 GB | 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
openchat_v3.2.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original quant method, 4-bit. |
openchat_v3.2.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
openchat_v3.2.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 8.06 GB | 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
openchat_v3.2.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.56 GB | 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
openchat_v3.2.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
openchat_v3.2.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
openchat_v3.2.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.40 GB | 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
openchat_v3.2.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 9.14 GB | 11.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
openchat_v3.2.ggmlv3.q6_K.bin | q6_K | 6 | 10.83 GB | 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
openchat_v3.2.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to run in llama.cpp
I use the following command line; adjust for your tastes and needs:
./main -t 10 -ngl 32 -m openchat_v3.2.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
Change -t 10
to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8
.
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp-models.md.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Luke from CarbonQuill, Aemon Algiz.
Patreon special mentions: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
Thank you to all my generous patrons and donaters!
Original model card: OpenChat's OpenChat v3.2
OpenChat: Advancing Open-source Language Models with Imperfect Data
OpenChat is a series of open-source language models based on supervised fine-tuning (SFT). We leverage the ~80k ShareGPT conversations with a conditioning strategy and weighted loss to achieve remarkable performance despite our simple methods. Our final vision is to develop a high-performance, open-source, and commercially available large language model, and we are continuously making progress.
π₯ Rank #1 of 13B open-source models | 89.5% win-rate on AlpacaEval | 7.01 score on MT-bench
π² FREE for commercial use under Llama 2 Community License
π Super efficient padding-free finetuning for applications, only 10 hours on 8xA100 80G
Usage
To use these models, we highly recommend installing the OpenChat package by following the installation guide and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using vLLM and can run on a GPU with at least 48GB RAM or two consumer GPUs with tensor parallelism. To enable tensor parallelism, append --tensor-parallel-size 2
to the serving command.
When started, the server listens at localhost:18888
for requests and is compatible with the OpenAI ChatCompletion API specifications. See the example request below for reference. Additionally, you can access the OpenChat Web UI for a user-friendly experience.
To deploy the server as an online service, use --api-keys sk-KEY1 sk-KEY2 ...
to specify allowed API keys and --disable-log-requests --disable-log-stats --log-file openchat.log
for logging only to a file. We recommend using a HTTPS gateway in front of the server for security purposes.
Note: If IPv6 address errors occur, which is a vLLM issue, please run export NCCL_IGNORE_DISABLED_P2P=1
before starting the server.
Example request (click to expand)
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_v3.2",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
Model | Size | Context | Weights | Serving |
---|---|---|---|---|
OpenChat 3.2 | 13B | 4096 | Huggingface | python -m ochat.serving.openai_api_server --model-type openchat_v3.2 --model openchat/openchat_v3.2 --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120 |
OpenChat 3.1 | 13B | 4096 | Huggingface | python -m ochat.serving.openai_api_server --model-type openchat_v3.1_llama2 --model openchat/openchat_v3.1 --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120 |
For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below:
Conversation templates (click to expand)
V3.2
# Single-turn V3.2
tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant:")
# Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901]
# Multi-turn V3.2
tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant: Hi<|end_of_turn|>GPT4 User: How are you today?<|end_of_turn|>GPT4 Assistant:")
# Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901, 6324, 32000, 402, 7982, 29946, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 402, 7982, 29946, 4007, 22137, 29901]
V3.1
# Single-turn V3.1
tokenize("Assistant is GPT4<|end_of_turn|>User: Hello<|end_of_turn|>Assistant:")
# Result: [1, 4007, 22137, 338, 402, 7982, 29946, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901]
# Multi-turn V3.1
tokenize("Assistant is GPT4<|end_of_turn|>User: Hello<|end_of_turn|>Assistant: Hi<|end_of_turn|>User: How are you today?<|end_of_turn|>Assistant:")
# Result: [1, 4007, 22137, 338, 402, 7982, 29946, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901, 6324, 32000, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 4007, 22137, 29901]
Benchmarks
We have evaluated our models using the two most popular evaluation benchmarks **, including AlpacaEval and MT-bench. Here we list the top models with our released versions, sorted by model size in descending order. The full version can be found on the MT-bench and AlpacaEval leaderboards.
To ensure consistency, we used the same routine as ChatGPT / GPT-4 to run these benchmarks. We started the OpenAI API-compatible server and set the openai.api_base
to http://localhost:18888/v1
in the benchmark program.
Model | Size | Context | π²Free | AlpacaEval (win rate %) | MT-bench (win rate adjusted %) | MT-bench (score) |
---|---|---|---|---|---|---|
v.s. text-davinci-003 | v.s. ChatGPT | |||||
GPT-4 | 1.8T* | 8K | β | 95.3 | 82.5 | 8.99 |
ChatGPT | 175B* | 4K | β | 89.4 | 50.0 | 7.94 |
Llama-2-70B-Chat | 70B | 4K | β | 92.7 | 6.86 | |
OpenChat 3.2 | 13B | 4K | β | 89.1 | 51.6 | 7.01 |
OpenChat 3.1 | 13B | 4K | β | 89.5 | 50.0 | 6.65 |
Llama-2-13B-Chat | 13B | 4K | β | 81.0 | 6.65 | |
Vicuna 1.3 | 13B | 2K | β | 82.1 | 37.5 | 6.00 |
*: Estimated model size
**: The benchmark metrics represent a quantified measure of a subset of the model's capabilities. A win-rate greater than 50% does not necessarily indicate that the model is better than ChatGPT in all scenarios or for all use cases. It is essential to consider the specific tasks or applications for which the model was evaluated and compare the results accordingly.
Limitations
Foundation Model Limitations Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
Hallucination of Non-existent Information OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
License
Our OpenChat V3 models are licensed under the Llama 2 Community License.
- Downloads last month
- 7
Model tree for TheBloke/OpenChat_v3.2-GGML
Base model
openchat/openchat_v3.2