language:
- en
license: llama2
library_name: transformers
model_name: Synthia 13B
base_model: migtissera/Synthia-13B
inference: false
model_creator: Migel Tissera
model_type: llama
pipeline_tag: text-generation
prompt_template: |
SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:
quantized_by: TheBloke
TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Synthia 13B - GGUF
- Model creator: Migel Tissera
- Original model: Synthia 13B
Description
This repo contains GGUF format model files for Migel Tissera's Synthia 13B.
About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
Here is an incomplate list of clients and libraries that are known to support GGUF:
- llama.cpp. The source project for GGUF. Offers a CLI and a server option.
- text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
- KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
- LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
- LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
- Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
- ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
- llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
- candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Orca-Vicuna
SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:
Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d36d5be95a0d9088b674dbb27354107221
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
Explanation of quantisation methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
synthia-13b.Q2_K.gguf | Q2_K | 2 | 5.43 GB | 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
synthia-13b.Q3_K_S.gguf | Q3_K_S | 3 | 5.66 GB | 8.16 GB | very small, high quality loss |
synthia-13b.Q3_K_M.gguf | Q3_K_M | 3 | 6.34 GB | 8.84 GB | very small, high quality loss |
synthia-13b.Q3_K_L.gguf | Q3_K_L | 3 | 6.93 GB | 9.43 GB | small, substantial quality loss |
synthia-13b.Q4_0.gguf | Q4_0 | 4 | 7.37 GB | 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
synthia-13b.Q4_K_S.gguf | Q4_K_S | 4 | 7.41 GB | 9.91 GB | small, greater quality loss |
synthia-13b.Q4_K_M.gguf | Q4_K_M | 4 | 7.87 GB | 10.37 GB | medium, balanced quality - recommended |
synthia-13b.Q5_0.gguf | Q5_0 | 5 | 8.97 GB | 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
synthia-13b.Q5_K_S.gguf | Q5_K_S | 5 | 8.97 GB | 11.47 GB | large, low quality loss - recommended |
synthia-13b.Q5_K_M.gguf | Q5_K_M | 5 | 9.23 GB | 11.73 GB | large, very low quality loss - recommended |
synthia-13b.Q6_K.gguf | Q6_K | 6 | 10.68 GB | 13.18 GB | very large, extremely low quality loss |
synthia-13b.Q8_0.gguf | Q8_0 | 8 | 13.83 GB | 16.33 GB | very large, extremely low quality loss - not recommended |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to download GGUF files
Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev
In text-generation-webui
Under Download Model, you can enter the model repo: TheBloke/Synthia-13B-GGUF and below it, a specific filename to download, such as: synthia-13b.q4_K_M.gguf.
Then click Download.
On the command line, including multiple files at once
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub>=0.17.1
Then you can download any individual model file to the current directory, at high speed, with a command like this:
huggingface-cli download TheBloke/Synthia-13B-GGUF synthia-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage
You can also download multiple files at once with a pattern:
huggingface-cli download TheBloke/Synthia-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Synthia-13B-GGUF synthia-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
Windows CLI users: Use set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1
before running the download command.
Example llama.cpp
command
Make sure you are using llama.cpp
from commit d0cee0d36d5be95a0d9088b674dbb27354107221 or later.
./main -ngl 32 -m synthia-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: {system_message}\nUSER: {prompt}\nASSISTANT:"
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change -c 4096
to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
For other parameters and how to use them, please refer to the llama.cpp documentation
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp.md.
How to run from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.
How to load this model from Python using ctransformers
First install the package
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
Simple example code to load one of these GGUF models
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Synthia-13B-GGUF", model_file="synthia-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
How to use with LangChain
Here's guides on using llama-cpp-python or ctransformers with LangChain:
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Migel Tissera's Synthia 13B
Synthia-13B
SynthIA (Synthetic Intelligent Agent) is a LLama-2-13B model trained on Orca style datasets. It has been fine-tuned for instruction following as well as having long-form conversations.
License Disclaimer:
This model is bound by the license & usage restrictions of the original Llama-2 model, and comes with no warranty or gurantees of any kind.
Evaluation
We evaluated Synthia-13B on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.
Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard
Task | Metric | Value |
arc_challenge | acc_norm | 0.5998 |
hellaswag | acc_norm | 0.8186 |
mmlu | acc_norm | 0.5611 |
truthfulqa_mc | mc2 | 0.4741 |
Total Average | - | 0.6134 |
Example Usage
Here is prompt format:
SYSTEM: You are Synthia. As a an AI intelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually.
USER: How is a rocket launched from the surface of the earth to Low Earth Orbit?
ASSISTANT:
Below shows a code example on how to use this model:
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "migtissera/Synthia-13B"
output_file_path = "./Synthia-13B-conversations.jsonl"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.75,
"generate_len": 1024,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
answer = string.split("USER:")[0].strip()
return f"{answer}"
conversation = f"SYSTEM: As a an AI superintelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually."
while True:
user_input = input("You: ")
llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
answer = generate_text(llm_prompt)
print(answer)
conversation = f"{llm_prompt}{answer}"
json_data = {"prompt": user_input, "answer": answer}
## Save your conversation
with open(output_file_path, "a") as output_file:
output_file.write(json.dumps(json_data) + "\n")
Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary. This is an uncensored model.
Citiation:
Please kindly cite using the following BibTeX:
@misc{Synthia-13B,
author = {Migel Tissera},
title = {Synthia-13B: Synthetic Intelligent Agent},
year = {2023},
publisher = {GitHub, HuggingFace},
journal = {GitHub repository, HuggingFace repository},
howpublished = {\url{https://huggingface.co/migtissera/Synthia-13B},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@software{touvron2023llama,
title={LLaMA2: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
Example Output
You: How is a rocket launched from the surface of the earth to Low Earth Orbit?
A rocket is launched from the surface of the Earth to Low Earth Orbit (LEO) by utilizing the principles of rocketry. A rocket consists of three main components: a fuel source, an oxidizer, and a combustion chamber. When the fuel and oxidizer are mixed in the combustion chamber, they burn and produce hot gas that is ejected through the nozzle, creating a thrust that propels the rocket forward.
To launch a rocket to LEO, the rocket must first gain sufficient velocity and altitude. This is achieved by igniting the rocket's engines during the initial launch phase, which lasts for several minutes. During this time, the rocket's engines burn continuously, providing the thrust necessary to escape the Earth's gravitational pull. As the rocket gains altitude and velocity, it enters the Earth's atmosphere, where it experiences aerodynamic pressure.
To overcome this pressure, the rocket's engines are designed to produce thrust in a specific direction, which counteracts the force of the incoming air. This is known as aerodynamic control. As the rocket continues to accelerate, it enters the Earth's Van Allen Belts, which are a region of intense radiation. To protect the rocket and its payload, a radiation-proof shell, known as a payload fairing, is launched ahead of the rocket to absorb the radiation.
Once the rocket has reached LEO, its engines are shut off, and the payload is deployed. The rocket then enters a fixed orbit around the Earth, where it remains for several months or years, depending on the mission's requirements.
Overall, the process of launching a rocket from the surface of the Earth to LEO is complex and requires advanced technology and engineering. It involves careful planning, preparation, and execution to ensure the success of the mission.
You: What's the velocity required?
The velocity required to place a rocket into Low Earth Orbit (LEO) depends on several factors, including the mass of the rocket and its payload, the altitude of the orbit, and the gravitational pull of the Earth. Generally, a rocket must reach a speed of around 7.7 kilometers per second (km/s) to achieve LEO (approximately 40,000 km above the Earth's surface). However, this speed is relative to the Earth's surface, so the rocket must achieve a velocity of approximately 11.3 km/s relative to the Earth's center of mass. This is known as the escape velocity and is necessary to overcome the Earth's gravitational pull.
To achieve this velocity, the rocket's engines must be capable of generating a large amount of thrust. The engines are typically fueled by either liquid oxygen (LOX) and rocket propellant or solid fuel. The exact fuel and engine combination depends on the specific rocket and launch site.
Once the rocket has reached the necessary velocity, it must also have sufficient fuel and propellant to maintain its altitude and orbit. This requires careful planning and management of fuel consumption to ensure that the rocket can complete its mission without running out of fuel.
Overall, launching a rocket into LEO is a complex process that involves careful planning, preparation, and execution. Achieving the necessary velocity and maintaining the rocket's orbit requires a high level of technical expertise and precision.