Edit model card

vit-base-patch16-224-imigue

This model is a fine-tuned google/vit-base-patch16-224-in21k, on TornikeO/imigue micro-level emotion classification dataset. The evaluation performance is as follows (per-class evals are precisions for that particular class. F1 score is micro-averaged.):

  • eval_loss: 0.6450
  • eval_accuracy: 0.8112
  • eval_f1: 0.6905
  • eval_arms_akimbo: 1.0
  • eval_biting_nails: 0.0
  • eval_buckle_button,_pulling_shirt_collar,_adjusting_tie: 0.8923
  • eval_bulging_face,_deep_breath: 0.6162
  • eval_covering_face: 0.8788
  • eval_crossing_fingers: 0.8468
  • eval_dustoffing_clothes: 0.77
  • eval_folding_arms: 0.7598
  • eval_head_up: 0.8182
  • eval_hold_back_arms: 0.7015
  • eval_illustrative_body_language: 0.8521
  • eval_minaret_gesture: 0.9677
  • eval_moving_torso: 0.7914
  • eval_playing_with_or_adjusting_hair: 0.8393
  • eval_playing_with_or_manipulating_objects: 0.9053
  • eval_pressing_lips: 0.7363
  • eval_putting_arms_behind_body: 0.0
  • eval_rubbing_eyes: 0.8793
  • eval_rubbing_or_holding_hands: 0.8180
  • eval_scratching_back: 0.875
  • eval_scratching_or_touching_arms: 0.7704
  • eval_shaking_shoulders: 0.7051
  • eval_sitting_upright: 0.7273
  • eval_touching_ears: 0.8261
  • eval_touching_hat: 0.9474
  • eval_touching_jaw: 0.8979
  • eval_touching_or_covering_suprasternal_notch: 1.0
  • eval_touching_or_scratching_facial_parts: 0.8178
  • eval_touching_or_scratching_forehead: 0.8
  • eval_touching_or_scratching_head: 0.8913
  • eval_touching_or_scratching_neck: 0.8788
  • eval_turtle_neck: 1.0
  • eval_runtime: 13.9155
  • eval_samples_per_second: 869.752
  • eval_steps_per_second: 3.449
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.