Edit model card

Helsinki-NLPopus-mt-tc-big-en-moroccain_dialect

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6930
  • Bleu: 50.0607
  • Gen Len: 14.7048

Model description

MarianConfig { "_name_or_path": "/content/drive/MyDrive/Colab Notebooks/big_helsinki_eng_dar", "activation_dropout": 0.0, "activation_function": "relu", "architectures": [ "MarianMTModel" ], "attention_dropout": 0.0, "bad_words_ids": [ [ 61246 ] ], "bos_token_id": 0, "classifier_dropout": 0.0, "d_model": 1024, "decoder_attention_heads": 16, "decoder_ffn_dim": 4096, "decoder_layerdrop": 0.0, "decoder_layers": 6, "decoder_start_token_id": 61246, "decoder_vocab_size": 61247, "dropout": 0.1, "encoder_attention_heads": 16, "encoder_ffn_dim": 4096, "encoder_layerdrop": 0.0, "encoder_layers": 6, "eos_token_id": 25897, "forced_eos_token_id": 25897, "init_std": 0.02, "is_encoder_decoder": true, "max_length": 512, "max_position_embeddings": 1024, "model_type": "marian", "normalize_embedding": false, "num_beams": 4, "num_hidden_layers": 6, "pad_token_id": 61246, "scale_embedding": true, "share_encoder_decoder_embeddings": true, "static_position_embeddings": true, "torch_dtype": "float32", "transformers_version": "4.28.0", "use_cache": true, "vocab_size": 61247 }

Intended uses & limitations

More information needed

Training and evaluation data

DatasetDict({ train: Dataset({ features: ['input_ids', 'attention_mask', 'labels'], num_rows: 15443 }) test: Dataset({ features: ['input_ids', 'attention_mask', 'labels'], num_rows: 813 }) })

Training procedure

Using transfer learning due to limited data in the Moroccan dialect.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 4000
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
0.617 1.0 1931 0.6930 50.0607 14.7048

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.