Adding Evaluation Results
#2
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: llama3.1
|
3 |
language:
|
4 |
- de
|
5 |
- en
|
@@ -9,8 +8,104 @@ language:
|
|
9 |
- es
|
10 |
- ar
|
11 |
- nl
|
|
|
12 |
tags:
|
13 |
- spectrum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
![Llama-3.1-SauerkrautLM-70b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/08/Llama3.1-SauerkrautLM-70b-Instruct2.png "Llama-3.1-SauerkrautLM-70b-Instruct")
|
@@ -118,4 +213,17 @@ If you are interested in customized LLMs for business applications, please get i
|
|
118 |
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
|
119 |
|
120 |
## Acknowledgement
|
121 |
-
Many thanks to [meta-llama](https://huggingface.co/meta-llama) for providing such a valuable model to the Open-Source community.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- de
|
4 |
- en
|
|
|
8 |
- es
|
9 |
- ar
|
10 |
- nl
|
11 |
+
license: llama3.1
|
12 |
tags:
|
13 |
- spectrum
|
14 |
+
model-index:
|
15 |
+
- name: Llama-3.1-SauerkrautLM-70b-Instruct
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: text-generation
|
19 |
+
name: Text Generation
|
20 |
+
dataset:
|
21 |
+
name: IFEval (0-Shot)
|
22 |
+
type: HuggingFaceH4/ifeval
|
23 |
+
args:
|
24 |
+
num_few_shot: 0
|
25 |
+
metrics:
|
26 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
27 |
+
value: 86.56
|
28 |
+
name: strict accuracy
|
29 |
+
source:
|
30 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
31 |
+
name: Open LLM Leaderboard
|
32 |
+
- task:
|
33 |
+
type: text-generation
|
34 |
+
name: Text Generation
|
35 |
+
dataset:
|
36 |
+
name: BBH (3-Shot)
|
37 |
+
type: BBH
|
38 |
+
args:
|
39 |
+
num_few_shot: 3
|
40 |
+
metrics:
|
41 |
+
- type: acc_norm
|
42 |
+
value: 57.24
|
43 |
+
name: normalized accuracy
|
44 |
+
source:
|
45 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
46 |
+
name: Open LLM Leaderboard
|
47 |
+
- task:
|
48 |
+
type: text-generation
|
49 |
+
name: Text Generation
|
50 |
+
dataset:
|
51 |
+
name: MATH Lvl 5 (4-Shot)
|
52 |
+
type: hendrycks/competition_math
|
53 |
+
args:
|
54 |
+
num_few_shot: 4
|
55 |
+
metrics:
|
56 |
+
- type: exact_match
|
57 |
+
value: 29.91
|
58 |
+
name: exact match
|
59 |
+
source:
|
60 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
61 |
+
name: Open LLM Leaderboard
|
62 |
+
- task:
|
63 |
+
type: text-generation
|
64 |
+
name: Text Generation
|
65 |
+
dataset:
|
66 |
+
name: GPQA (0-shot)
|
67 |
+
type: Idavidrein/gpqa
|
68 |
+
args:
|
69 |
+
num_few_shot: 0
|
70 |
+
metrics:
|
71 |
+
- type: acc_norm
|
72 |
+
value: 12.19
|
73 |
+
name: acc_norm
|
74 |
+
source:
|
75 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
76 |
+
name: Open LLM Leaderboard
|
77 |
+
- task:
|
78 |
+
type: text-generation
|
79 |
+
name: Text Generation
|
80 |
+
dataset:
|
81 |
+
name: MuSR (0-shot)
|
82 |
+
type: TAUR-Lab/MuSR
|
83 |
+
args:
|
84 |
+
num_few_shot: 0
|
85 |
+
metrics:
|
86 |
+
- type: acc_norm
|
87 |
+
value: 19.39
|
88 |
+
name: acc_norm
|
89 |
+
source:
|
90 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
91 |
+
name: Open LLM Leaderboard
|
92 |
+
- task:
|
93 |
+
type: text-generation
|
94 |
+
name: Text Generation
|
95 |
+
dataset:
|
96 |
+
name: MMLU-PRO (5-shot)
|
97 |
+
type: TIGER-Lab/MMLU-Pro
|
98 |
+
config: main
|
99 |
+
split: test
|
100 |
+
args:
|
101 |
+
num_few_shot: 5
|
102 |
+
metrics:
|
103 |
+
- type: acc
|
104 |
+
value: 48.17
|
105 |
+
name: accuracy
|
106 |
+
source:
|
107 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
|
108 |
+
name: Open LLM Leaderboard
|
109 |
---
|
110 |
|
111 |
![Llama-3.1-SauerkrautLM-70b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/08/Llama3.1-SauerkrautLM-70b-Instruct2.png "Llama-3.1-SauerkrautLM-70b-Instruct")
|
|
|
213 |
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
|
214 |
|
215 |
## Acknowledgement
|
216 |
+
Many thanks to [meta-llama](https://huggingface.co/meta-llama) for providing such a valuable model to the Open-Source community.
|
217 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
218 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VAGOsolutions__Llama-3.1-SauerkrautLM-70b-Instruct)
|
219 |
+
|
220 |
+
| Metric |Value|
|
221 |
+
|-------------------|----:|
|
222 |
+
|Avg. |42.24|
|
223 |
+
|IFEval (0-Shot) |86.56|
|
224 |
+
|BBH (3-Shot) |57.24|
|
225 |
+
|MATH Lvl 5 (4-Shot)|29.91|
|
226 |
+
|GPQA (0-shot) |12.19|
|
227 |
+
|MuSR (0-shot) |19.39|
|
228 |
+
|MMLU-PRO (5-shot) |48.17|
|
229 |
+
|