|
--- |
|
license: apache-2.0 |
|
model-index: |
|
- name: OpenHermes-2.5-neural-chat-v3-3-Slerp |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 68.09 |
|
name: normalized accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 86.2 |
|
name: normalized accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.26 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 62.78 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 79.16 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 67.78 |
|
name: accuracy |
|
--- |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/x44nNbPTpv0zGTqA1Jb2q.png) |
|
|
|
# OpenHermes-2.5-neural-chat-v3-3-Slerp |
|
|
|
This is the model for OpenHermes-2.5-neural-chat-v3-3-Slerp. I used [mergekit](https://github.com/cg123/mergekit) to merge models. |
|
|
|
# Prompt Templates |
|
|
|
You can use these prompt templates, but I recommend using ChatML. |
|
|
|
### ChatML [(OpenHermes-2.5-Mistral-7B)](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B): |
|
|
|
``` |
|
<|im_start|>system |
|
{system}<|im_end|> |
|
<|im_start|>user |
|
{user}<|im_end|> |
|
<|im_start|>assistant |
|
{asistant}<|im_end|> |
|
``` |
|
|
|
### [neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3): |
|
|
|
``` |
|
### System: |
|
{system} |
|
### User: |
|
{user} |
|
### Assistant: |
|
``` |
|
|
|
# Yaml Config to reproduce |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: teknium/OpenHermes-2.5-Mistral-7B |
|
layer_range: [0, 32] |
|
- model: Intel/neural-chat-7b-v3-3 |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 # fallback for rest of tensors |
|
dtype: bfloat16 |
|
``` |
|
|
|
# Quantizationed versions |
|
|
|
Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke). |
|
|
|
##### GPTQ |
|
|
|
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ) |
|
|
|
##### GGUF |
|
|
|
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF) |
|
|
|
##### AWQ |
|
|
|
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ) |
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__OpenHermes-2.5-neural-chat-v3-3-Slerp) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 71.38 | |
|
| ARC (25-shot) | 68.09 | |
|
| HellaSwag (10-shot) | 86.2 | |
|
| MMLU (5-shot) | 64.26 | |
|
| TruthfulQA (0-shot) | 62.78 | |
|
| Winogrande (5-shot) | 79.16 | |
|
| GSM8K (5-shot) | 67.78 | |
|
|