Edit model card

Intruduction

We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems.

Refer to our paper and github for more details!

To use Xmodel_VLM for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, please make sure that you are using the latest code and related virtual environments.

Inference example

import sys
import torch
import argparse
from PIL import Image
from pathlib import Path
import time
sys.path.append(str(Path(__file__).parent.parent.resolve()))

from xmodelvlm.model.xmodelvlm import load_pretrained_model
from xmodelvlm.conversation import conv_templates, SeparatorStyle
from xmodelvlm.utils import disable_torch_init, process_images, tokenizer_image_token, KeywordsStoppingCriteria
from xmodelvlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN

def inference_once(args):
    disable_torch_init()
    model_name = args.model_path.split('/')[-1]
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.load_8bit, args.load_4bit)

    images = [Image.open(args.image_file).convert("RGB")]
    images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16)

    conv = conv_templates[args.conv_mode].copy()
    conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + args.prompt)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    # Input
    input_ids = (tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda())
    stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids)
    # Inference
    with torch.inference_mode():
        start_time = time.time()
        output_ids = model.generate(
            input_ids,
            images=images_tensor,
            do_sample=True if args.temperature > 0 else False,
            temperature=args.temperature,
            top_p=args.top_p,
            num_beams=args.num_beams,
            max_new_tokens=args.max_new_tokens,
            use_cache=True,
            stopping_criteria=[stopping_criteria],
        )
        end_time = time.time()
        execution_time = end_time-start_time
        print("the execution time (secend): ", execution_time)
    # Result-Decode
    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids")
    outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[: -len(stop_str)]
    print(f"๐Ÿš€ {model_name}: {outputs.strip()}\n")
if __name__ == '__main__':
   model_path = "XiaoduoAILab/Xmodel_VLM" # model weight file
   image_file = "assets/demo.jpg" # image file
   prompt_str = "Who is the author of this book?\nAnswer the question using a single word or phrase."
   # (or) What is the title of this book?
   # (or) Is this book related to Education & Teaching?
   
   args = type('Args', (), {
       "model_path": model_path,
       "image_file": image_file,
       "prompt": prompt_str,
       "conv_mode": "v1",
       "temperature": 0, 
       "top_p": None,
       "num_beams": 1,
       "max_new_tokens": 512,
       "load_8bit": False,
       "load_4bit": False,
   })()
   
   inference_once(args)

Prompt: Who is the author of this book?\nAnswer the question using a single word or phrase. Book Cover Author: Susan Wise Bauer

Evaluation

We evaluate the multimodal performance across a variety of datasets: VizWiz, SQAI, VQAT, POPE, GQA, MMB, MMBCN , MM-Vet, and MME. Our analysis, as depicted In the following table.

Method LLM Res. VizWiz SQA VQA POPE GQA MMB MMBCN MM-Vet MME
Openflamingo MPT-7B 336 - - 33.6 - - 4.6 - - -
BLIP-2 Vicuna-13B 224 - 61.0 42.5 85.3 41.0 - - - 1293.8
MiniGPT-4 Vicuna-7B 224 - - - - 32.2 23.0 - - 581.7
InstructBLIP Vicuna-7B 224 - 60.5 50.1 - 49.2 - - - -
InstructBLIP Vicuna-13B 224 - 63.1 50.7 78.9 49.5 - - - 1212.8
Shikra Vicuna-13B 224 - - - - - 58.8 - - -
Qwen-VL Qwen-7B 448 - 67.1 63.8 - 59.3 38.2 - - 1487.6
MiniGPT-v2 LLaMA-7B 448 - - - - 60.3 12.2 - - -
LLaVA-v1.5-13B Vicuna-13B 336 53.6 71.6 61.3 85.9 63.3 67.7 63.6 35.4 1531.3
MobileVLM 1.7 MobileLLaMA 1.4B 336 26.3 54.7 41.5 84.5 56.1 53.2 16.67 21.7 1196.2
Xmodel-VLM Xmodel-LM 1.1B 336 41.7 53.3 39.9 85.9 58.3 52.0 45.7 21.8 1250.7
Downloads last month
70
Safetensors
Model size
1.5B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using XiaoduoAILab/Xmodel_VLM 1