Introduction
Con-J-Qwen2-7B (learning the generative Judge using self-generated Contrastive judgments) is an advanced generative judge built on Qwen2-7B-Instruct architecture and dataset Skywork/Skywork-Reward-Preference-80K-v0.1.
Con-J-Qwen2-7B is trained from preference data. We prompt the pre-trained Qwen2-7B-Instruct model to generate positive and negative judgments, both supported with rationales in natural language form. Then the self-generated contrastive judgment pairs are used to train the generative judge with Direct Preference Optimization (DPO). By doing this, Con-J learns to act as a generative judge and provides accurate and supprting rationales.
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ZiyiYe/Con-J-Qwen2-7B"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = "What is the range of the numeric output of a sigmoid node in a neural network?"
answer1 = "The output of a sigmoid node is bounded between -1 and 1."
answer2 = "The output of a sigmoid node is bounded between 0 and 1."
# Format and tokenize the conversations
CON_J_PROMPT = """作为一个评价专家,给定一个问题和它的两个可能的回答,请选出哪一个回答在连贯性、准确性、覆盖度和上述定义的整体质量方面最为符合。请用JSON格式输出你的判断, 其中"原因"是你提供的解释,"更好的回答"是整数类型的1或2,例如{{"原因": "你的解释", "更好的回答": 1}}。以下是问题和候选回答的内容:
\n问题:{instruction}
回答1:{output_1}
回答2:{output_2}"""
user_prompt = CON_J_PROMPT.format(instruction=question, output_1=answer1, output_2=answer2)
system_prompt = ""
messages = [
{"role": "system", "content": system_prompt,},
{"role": "user", "content": user_prompt},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
prompt = tokenizer([prompt], return_tensors="pt")
# Generate judgment for the given prompt
with torch.no_grad():
generated_ids = model.generate(prompt.input_ids, do_sample=False, max_new_tokens=2048,)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(prompt.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# response: {"原因": "回答1中的-1是错误的,因为sigmoid函数的实际输出范围是0到1,而不是包括-1。回答2准确地描述了sigmoid函数的输出范围是0到1。",\n "更好的回答": 2}
Performance
Model | Infinity- Preference |
Ultra- Feedback |
PKU- SafeRLHF |
Reward-Bench | |||
---|---|---|---|---|---|---|---|
Chat | Chat-H | Safety | Reasoning | ||||
Llama3.1-8B | 59.0 | 62.9 | 66.4 | 80.7 | 49.8 | 64.0 | 68.1 |
Llama3.1-70B | 64.0 | 71.4 | 67.6 | 97.2 | 70.2 | 82.8 | 86.0 |
Qwen2-7B | 59.0 | 64.5 | 67.2 | 91.3 | 44.8 | 73.6 | 69.0 |
Qwen2.5-72B | 70.0 | 66.0 | 58.7 | 86.6 | 61.4 | 74.5 | 90.7 |
Auto-J | 69.0 | 63.9 | 66.9 | 93.0 | 40.0 | 65.5 | 50.5 |
Prometheus 2 | 68.0 | 63.3 | 63.0 | 85.5 | 49.1 | 77.1 | 76.5 |
GPT-4o | 75.0 | 72.2 | 69.6 | 95.3 | 74.3 | 87.6 | 86.9 |
Con-J (ours) | 81.0 | 73.0 | 68.4 | 91.3 | 79.6 | 88.0 | 87.1 |
Reference
@misc{ye2024scalarrewardmodellearning,
title={Beyond Scalar Reward Model: Learning Generative Judge from Preference Data},
author={Ziyi Ye and Xiangsheng Li and Qiuchi Li and Qingyao Ai and Yujia Zhou and Wei Shen and Dong Yan and Yiqun Liu},
year={2024},
eprint={2410.03742},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.03742},
}
- Downloads last month
- 19