abdalrahmanshahrour's picture
Update
bf10949
metadata
license: apache-2.0
language:
  - ar
tags:
  - summarization
  - AraBERT
  - BERT
  - BERT2BERT
  - MSA
  - Arabic Text Summarization
  - Arabic News Title Generation
  - Arabic Paraphrasing
  - Summarization
  - generated_from_trainer
  - Transformers
  - PyTorch
widget:
  - text: >-
      شهدت مدينة طرابلس، مساء أمس الأربعاء، احتجاجات شعبية وأعمال شغب لليوم
      الثالث على التوالي، وذلك بسبب تردي الوضع المعيشي والاقتصادي. واندلعت
      مواجهات عنيفة وعمليات كر وفر ما بين الجيش اللبناني والمحتجين استمرت
      لساعات، إثر محاولة فتح الطرقات المقطوعة، ما أدى إلى إصابة العشرات من
      الطرفين.
datasets:
  - xlsum
model-index:
  - name: arabartsummarization
    results: []

arabartsummarization

Model description

The model can be used as follows:

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from arabert.preprocess import ArabertPreprocessor

model_name="abdalrahmanshahrour/arabartsummarization"
preprocessor = ArabertPreprocessor(model_name="")

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)

text = "شهدت مدينة طرابلس، مساء أمس الأربعاء، احتجاجات شعبية وأعمال شغب لليوم الثالث على التوالي، وذلك بسبب تردي الوضع المعيشي والاقتصادي. واندلعت مواجهات عنيفة وعمليات كر وفر ما بين الجيش اللبناني والمحتجين استمرت لساعات، إثر محاولة فتح الطرقات المقطوعة، ما أدى إلى إصابة العشرات من الطرفين."
text = preprocessor.preprocess(text)

result = pipeline(text,
            pad_token_id=tokenizer.eos_token_id,
            num_beams=3,
            repetition_penalty=3.0,
            max_length=200,
            length_penalty=1.0,
            no_repeat_ngram_size = 3)[0]['generated_text']
result
>>> "تجددت الاشتباكات بين الجيش اللبناني ومحتجين في مدينة طرابلس شمالي لبنان."

Validation Metrics

  • Loss: 2.3394
  • Rouge1: 1.142
  • Rouge2: 0.227
  • RougeL: 1.124
  • RougeLsum: 1.234

Intended uses & limitations

More information needed

Training and evaluation data

42.21K row in total

  • Training : 37.52K rows
  • Evaluation : 4.69K rows

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.784 1.0 9380 2.3820
2.4954 2.0 18760 2.3418
2.2223 3.0 28140 2.3394

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2