Antonio Cheong commited on
Commit
2f60e94
1 Parent(s): d17239a
Files changed (3) hide show
  1. .gitmodules +3 -0
  2. README.md +95 -0
  3. amazon-cot +1 -0
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "amazon-cot"]
2
+ path = amazon-cot
3
+ url = https://github.com/amazon-science/mm-cot
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ > # Cloned from https://github.com/amazon-science/mm-cot
2
+
3
+ # Multimodal Chain-of-Thought Reasoning in Language Models
4
+
5
+ <h5 align="center"><i>"Imagine learning a textbook without figures or tables."</i></h5>
6
+
7
+ Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output.
8
+
9
+ ![](vision_features/mm-cot.png)
10
+
11
+
12
+ ## Requirements
13
+
14
+ Install all required python dependencies:
15
+
16
+ ```
17
+ pip install -r requirements.txt
18
+ ```
19
+
20
+ ## Datasets
21
+
22
+ Download the dataset from the following repository:
23
+
24
+ ```
25
+ https://github.com/lupantech/ScienceQA/tree/main/data
26
+ ```
27
+
28
+ Download the extracted vision features from [vision_features](https://drive.google.com/file/d/13B0hc_F_45-UlqPLKSgRz-ALtFQ8kIJr/view?usp=share_link) and unzip the files under `vision_features`
29
+
30
+ ## Instructions
31
+
32
+ ### Training
33
+
34
+ ```
35
+ # rationale generation
36
+ CUDA_VISIBLE_DEVICES=0,1 python main.py \
37
+ --model allenai/unifiedqa-t5-base \
38
+ --user_msg rationale --img_type detr \
39
+ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
40
+ --final_eval --prompt_format QCM-LE
41
+
42
+ # answer inference
43
+ CUDA_VISIBLE_DEVICES=0,1 python main.py \
44
+ --model allenai/unifiedqa-t5-base \
45
+ --user_msg answer --img_type detr \
46
+ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
47
+ --final_eval --prompt_format QCMG-A \
48
+ --eval_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json \
49
+ --test_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json
50
+ ```
51
+
52
+ ### Inference
53
+
54
+ Our trained models are available at [models](https://drive.google.com/file/d/1FtTYOJPHnWnFfCxNC6M3gar4RAX5E21b/view?usp=share_link). To use our trained models, please put the them under the ```models``` folder.
55
+
56
+ ```
57
+ # rationale generation
58
+ CUDA_VISIBLE_DEVICES=0,1 python main.py \
59
+ --model allenai/unifiedqa-t5-base \
60
+ --user_msg rationale --img_type detr \
61
+ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
62
+ --final_eval --prompt_format QCM-LE \
63
+ --evaluate_dir models/MM-CoT-UnifiedQA-base-Rationale
64
+
65
+ # answer inference
66
+ CUDA_VISIBLE_DEVICES=0,1 python main.py \
67
+ --model allenai/unifiedqa-t5-base \
68
+ --user_msg answer --img_type detr \
69
+ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
70
+ --final_eval --prompt_format QCMG-A \
71
+ --eval_le models/rationale/predictions_ans_eval.json \
72
+ --test_le models/rationale/predictions_ans_test.json \
73
+ --evaluate_dir models/MM-CoT-UnifiedQA-base-Answer
74
+ ```
75
+
76
+ ## Citing MM-CoT
77
+
78
+ ```
79
+ @article{zhang2023multicot,
80
+ title={Multimodal Chain-of-Thought Reasoning in Language Models},
81
+ author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Zhao, Hai and Karypis, George and Smola, Alex},
82
+ journal={arXiv preprint arXiv:2302.00923},
83
+ year={2023}
84
+ }
85
+ ```
86
+
87
+ ## License
88
+
89
+ This project is licensed under the Apache-2.0 License.
90
+
91
+ ## Acknowledgement
92
+
93
+ Part of our codes are adapted from [ScienceQA](https://github.com/lupantech/ScienceQA) and [Transformers](https://github.com/huggingface/transformers).
94
+
95
+ We thank Pan Lu for providing parameter size for ScienceQA baselines.
amazon-cot ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 9f6106d12c2f4d07c49f5524b332b89704df1277