File size: 3,027 Bytes
f37db32
 
 
 
 
 
1e97ceb
f37db32
 
7940fc4
1e97ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: other
license_name: other
license_link: LICENSE
---
license for Llama 2 model checkpoints is Llama 2 Community license. \
License for Lumina-T2I 5B checkpoints is Apache-2.

In this repo, you will find FP32 (original, un-changed), BF16 and FP16 PTH and FP32, BF16, FP16 safetensor files for Lumina T2I 5B text-to-image model. \
BF16 pth file works fine, I plan to check the rest later. There could be some code missing in `safetensors` files due to it being removed during conversion, I don't know. If you try to run any of the files, let me know how they work.

You can also find un-gated files for Llama 2 7B 4-bit (bnb) and 16-bit. Both are simply copies of those files from unsloth repos. I have not run Lumina locally yet to confirm, but I believe both should work.

Script used for converting FP32 pth to FP16 pth

```
import torch

# Load the FP32 model
fp32_model_path = "consolidated.00-of-01.pth"
fp32_model = torch.load(fp32_model_path, map_location='cpu')

# Convert the model to FP16
fp16_model = {}
for key, value in fp32_model.items():
    if isinstance(value, torch.Tensor):
        fp16_model[key] = value.half()
    elif isinstance(value, dict):
        fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
    else:
        fp16_model[key] = value

# Save the FP16 model
fp16_model_path = "consolidated.00-of-01_fp16.pth"
torch.save(fp16_model, fp16_model_path)
```

Script used for converting FP32 pth to FP32, BF16, FP16 safetensors and BF16 pth

```
import torch
from safetensors.torch import save_file, load_file

# Load the FP32 model
fp32_model_path = "consolidated.00-of-01.pth"
fp32_model = torch.load(fp32_model_path, map_location='cpu')

# Convert the model to BF16
bf16_model = {}
for key, value in fp32_model.items():
    if isinstance(value, torch.Tensor):
        bf16_model[key] = value.to(torch.bfloat16)
    elif isinstance(value, dict):
        bf16_model[key] = {k: v.to(torch.bfloat16) if isinstance(v, torch.Tensor) else v for k, v in value.items()}
    else:
        bf16_model[key] = value

# Convert the model to FP16
fp16_model = {}
for key, value in fp32_model.items():
    if isinstance(value, torch.Tensor):
        fp16_model[key] = value.half()
    elif isinstance(value, dict):
        fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
    else:
        fp16_model[key] = value

# Save the FP32 model in safetensors format
fp32_safetensors_path = "consolidated.00-of-01_fp32.safetensors"
save_file(fp32_model, fp32_safetensors_path)

# Save the BF16 model in safetensors format
bf16_safetensors_path = "consolidated.00-of-01_bf16.safetensors"
save_file(bf16_model, bf16_safetensors_path)

# Save the FP16 model in safetensors format
fp16_safetensors_path = "consolidated.00-of-01_fp16.safetensors"
save_file(fp16_model, fp16_safetensors_path)

# Save the BF16 model in .pth format
bf16_model_path = "consolidated.00-of-01_bf16.pth"
torch.save(bf16_model, bf16_model_path)
```