|
--- |
|
base_model: jeffwan/mmarco-mMiniLMv2-L12-H384-v1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:4173 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'Aquelles persones (físiques o jurídiques) que es disposin a exercir |
|
una de les següents activitats: ... Han de comunicar-ho a l''Ajuntament prèviament |
|
a la data prevista de la seva obertura.' |
|
sentences: |
|
- Quin és el benefici que es pretén obtenir amb aquests ajuts econòmics per a les |
|
empreses d'hostaleria i restauració? |
|
- Quin és el benefici del sistema de teleassistència per a les persones que viuen |
|
amb altres persones amb discapacitat? |
|
- Quin és el propòsit de la comunicació prèvia d'una activitat recreativa o un espectacle |
|
públic? |
|
- source_sentence: Les persones titulars d’activitats que generin residus comercials |
|
o industrials assimilables als municipals, vindran obligats a acreditar davant |
|
l’Ajuntament que tenen contractat un gestor autoritzat per la recollida, tractament |
|
i eliminació dels residus que produeixi l’activitat corresponent. |
|
sentences: |
|
- Quin és el paper de l'Ajuntament en l'acreditació de recollida de residus? |
|
- Quin és el benefici de les activitats d'animació socio-cultural? |
|
- Quin és el benefici de l'ajut per a la creació de noves empreses? |
|
- source_sentence: Modificació de sol·licitud de permís d'ocupació de la via pública |
|
per filmacions, rodatges o sessions fotogràfiques. |
|
sentences: |
|
- Quin és el grau de discapacitat mínim per a rebre l'ajut de 300€ anuals? |
|
- Quin és el requisit per a la constitució o modificació del règim de propietat |
|
horitzontal? |
|
- Quin és el tipus de permís que es modifica? |
|
- source_sentence: El beneficiari és l'encarregat de complir les condicions de la |
|
subvenció i de presentar els informes de seguiment del projecte. |
|
sentences: |
|
- Quin és el paper del beneficiari en el procés de subvencions? |
|
- Quin és el càlcul dels interessos de demora en el fraccionament i l'ajornament? |
|
- Quin és el període de temps en què es poden efectuar les despeses mèdiques per |
|
a rebre l'ajuda? |
|
- source_sentence: Aquest tràmit permet sol·licitar la llicència per a realitzar obres |
|
d'excavació a la via pública per a la instal·lació o reparació d'infraestructures |
|
de serveis i subministraments. |
|
sentences: |
|
- Quin és el paper de la via pública en aquest tràmit? |
|
- Quin és el requisit principal per obtenir el certificat? |
|
- Quin és l'objectiu de presentar una denúncia per presumpta infracció urbanística? |
|
model-index: |
|
- name: SentenceTransformer based on jeffwan/mmarco-mMiniLMv2-L12-H384-v1 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.07974137931034483 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.02658045977011494 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.022413793103448276 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.018318965517241378 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.07974137931034483 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.09775400592125581 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.07205545292829774 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.08506410086235629 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.07974137931034483 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.02658045977011494 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.022413793103448276 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.018318965517241378 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.036637931034482756 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.07974137931034483 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.09775400592125581 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.07205545292829774 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.08506410086235629 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.03879310344827586 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.08620689655172414 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.12284482758620689 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.20905172413793102 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.03879310344827586 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.028735632183908042 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.02456896551724138 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.020905172413793104 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.03879310344827586 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.08620689655172414 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.12284482758620689 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.20905172413793102 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.10886950781001367 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.07890325670498083 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.09261787732124524 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.08836206896551724 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.11637931034482758 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.1961206896551724 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.029454022988505746 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.02327586206896552 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.01961206896551724 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.08836206896551724 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.11637931034482758 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.1961206896551724 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.10531304697568825 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.07822078544061303 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.09314633548904587 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.09051724137931035 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.03017241379310345 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.022413793103448276 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.018318965517241378 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.040948275862068964 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.09051724137931035 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.11206896551724138 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.18318965517241378 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.1000598523425774 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.07514453338806787 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.09004925619574798 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on jeffwan/mmarco-mMiniLMv2-L12-H384-v1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jeffwan/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/jeffwan/mmarco-mMiniLMv2-L12-H384-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [jeffwan/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/jeffwan/mmarco-mMiniLMv2-L12-H384-v1) <!-- at revision 76559e02cfe153b000907ce78044543f132562e9 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerank") |
|
# Run inference |
|
sentences = [ |
|
"Aquest tràmit permet sol·licitar la llicència per a realitzar obres d'excavació a la via pública per a la instal·lació o reparació d'infraestructures de serveis i subministraments.", |
|
'Quin és el paper de la via pública en aquest tràmit?', |
|
"Quin és l'objectiu de presentar una denúncia per presumpta infracció urbanística?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0366 | |
|
| cosine_accuracy@3 | 0.0797 | |
|
| cosine_accuracy@5 | 0.1121 | |
|
| cosine_accuracy@10 | 0.1832 | |
|
| cosine_precision@1 | 0.0366 | |
|
| cosine_precision@3 | 0.0266 | |
|
| cosine_precision@5 | 0.0224 | |
|
| cosine_precision@10 | 0.0183 | |
|
| cosine_recall@1 | 0.0366 | |
|
| cosine_recall@3 | 0.0797 | |
|
| cosine_recall@5 | 0.1121 | |
|
| cosine_recall@10 | 0.1832 | |
|
| cosine_ndcg@10 | 0.0978 | |
|
| cosine_mrr@10 | 0.0721 | |
|
| **cosine_map@100** | **0.0851** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0366 | |
|
| cosine_accuracy@3 | 0.0797 | |
|
| cosine_accuracy@5 | 0.1121 | |
|
| cosine_accuracy@10 | 0.1832 | |
|
| cosine_precision@1 | 0.0366 | |
|
| cosine_precision@3 | 0.0266 | |
|
| cosine_precision@5 | 0.0224 | |
|
| cosine_precision@10 | 0.0183 | |
|
| cosine_recall@1 | 0.0366 | |
|
| cosine_recall@3 | 0.0797 | |
|
| cosine_recall@5 | 0.1121 | |
|
| cosine_recall@10 | 0.1832 | |
|
| cosine_ndcg@10 | 0.0978 | |
|
| cosine_mrr@10 | 0.0721 | |
|
| **cosine_map@100** | **0.0851** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0388 | |
|
| cosine_accuracy@3 | 0.0862 | |
|
| cosine_accuracy@5 | 0.1228 | |
|
| cosine_accuracy@10 | 0.2091 | |
|
| cosine_precision@1 | 0.0388 | |
|
| cosine_precision@3 | 0.0287 | |
|
| cosine_precision@5 | 0.0246 | |
|
| cosine_precision@10 | 0.0209 | |
|
| cosine_recall@1 | 0.0388 | |
|
| cosine_recall@3 | 0.0862 | |
|
| cosine_recall@5 | 0.1228 | |
|
| cosine_recall@10 | 0.2091 | |
|
| cosine_ndcg@10 | 0.1089 | |
|
| cosine_mrr@10 | 0.0789 | |
|
| **cosine_map@100** | **0.0926** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0409 | |
|
| cosine_accuracy@3 | 0.0884 | |
|
| cosine_accuracy@5 | 0.1164 | |
|
| cosine_accuracy@10 | 0.1961 | |
|
| cosine_precision@1 | 0.0409 | |
|
| cosine_precision@3 | 0.0295 | |
|
| cosine_precision@5 | 0.0233 | |
|
| cosine_precision@10 | 0.0196 | |
|
| cosine_recall@1 | 0.0409 | |
|
| cosine_recall@3 | 0.0884 | |
|
| cosine_recall@5 | 0.1164 | |
|
| cosine_recall@10 | 0.1961 | |
|
| cosine_ndcg@10 | 0.1053 | |
|
| cosine_mrr@10 | 0.0782 | |
|
| **cosine_map@100** | **0.0931** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:---------| |
|
| cosine_accuracy@1 | 0.0409 | |
|
| cosine_accuracy@3 | 0.0905 | |
|
| cosine_accuracy@5 | 0.1121 | |
|
| cosine_accuracy@10 | 0.1832 | |
|
| cosine_precision@1 | 0.0409 | |
|
| cosine_precision@3 | 0.0302 | |
|
| cosine_precision@5 | 0.0224 | |
|
| cosine_precision@10 | 0.0183 | |
|
| cosine_recall@1 | 0.0409 | |
|
| cosine_recall@3 | 0.0905 | |
|
| cosine_recall@5 | 0.1121 | |
|
| cosine_recall@10 | 0.1832 | |
|
| cosine_ndcg@10 | 0.1001 | |
|
| cosine_mrr@10 | 0.0751 | |
|
| **cosine_map@100** | **0.09** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 4,173 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 49.38 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 21.0 tokens</li><li>max: 48 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------| |
|
| <code>Havent-se d'acreditar la matriculació i inscripció en el respectiu centre públic o concertat, així com el cost de les llars d'infants, de l'educació especialitzada per les discapacitats físiques, psíquiques i sensorials en centres públics, concertats o privats.</code> | <code>Quin és el requisit per acreditar la llar d'infants?</code> | |
|
| <code>El volant històric de convivència és el document que informa de la residencia en el municipi de Sitges, així com altres fets relatius a l'empadronament d'una persona, i detalla tots els domicilis, la data inicial i final en els que ha estat empadronada en cadascun d'ells, i les persones amb les què constava inscrites, segons les dades que consten al Padró Municipal d'Habitants fins a la data d'expedició.</code> | <code>Quin és el propòsit del volant històric de convivència?</code> | |
|
| <code>Instal·lació de tanques sense obra.</code> | <code>Quins són els exemples d'instal·lacions que es poden comunicar amb aquest tràmit?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
384, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `num_train_epochs`: 5 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.2 |
|
- `bf16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.6130 | 10 | 11.7801 | - | - | - | - | - | |
|
| 0.9808 | 16 | - | 0.0132 | 0.0103 | 0.0105 | 0.0116 | 0.0105 | |
|
| 1.2261 | 20 | 10.5594 | - | - | - | - | - | |
|
| 1.8391 | 30 | 9.0859 | - | - | - | - | - | |
|
| 1.9617 | 32 | - | 0.0337 | 0.0302 | 0.0298 | 0.0323 | 0.0298 | |
|
| 2.4521 | 40 | 7.5747 | - | - | - | - | - | |
|
| 2.9425 | 48 | - | 0.0811 | 0.0765 | 0.0679 | 0.0742 | 0.0679 | |
|
| 3.0651 | 50 | 5.7656 | - | - | - | - | - | |
|
| 3.6782 | 60 | 4.7495 | - | - | - | - | - | |
|
| 3.9847 | 65 | - | 0.0926 | 0.0929 | 0.0822 | 0.0886 | 0.0822 | |
|
| 4.2912 | 70 | 4.1026 | - | - | - | - | - | |
|
| **4.9042** | **80** | **3.8201** | **0.0931** | **0.0926** | **0.0851** | **0.09** | **0.0851** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.34.0.dev0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |