Code-Mistral-7B / README.md
ajibawa-2023's picture
Adding Evaluation Results (#1)
351e24d verified
metadata
language:
  - en
license: apache-2.0
tags:
  - code
  - mathematics
datasets:
  - ajibawa-2023/Code-290k-ShareGPT
  - m-a-p/Code-Feedback
  - microsoft/orca-math-word-problems-200k
  - teknium/openhermes
model-index:
  - name: Code-Mistral-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 64.59
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.29
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54.64
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 82.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.08
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
          name: Open LLM Leaderboard

Code-Mistral-7B

This Model is trained on refined version of my dataset Code-290k-ShareGPT.

Besides this it is trained on following datasets:

Code-Feedback

orca-math-word-problems-200k

Openhermes

The idea was to check how this Model will perform with both Code & Maths datasets. This model is very good with Coding. Maths is still hit & miss but you can test out this model.

This Model is trained on massive datasets so the results are very good. I have used ChatML prompt format.

Kindly note this is qLoRA version, a rare exception.

GGUF & Exllama

GGUF: Link

Exllama v2: Link

Special Thanks to Bartowski for quantizing this model.

Training:

Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took almost 33 Hours. Axolotl codebase was used for training purpose. Entire data is trained on Mistral.

Example Prompt: This model uses ChatML prompt format.

<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

You can modify above Prompt as per your requirement.

I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.

Example Output

C++

image/jpeg

Error Resolving

image/jpeg

Matrices

image/jpeg

Machine Learning

image/jpeg

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.97
AI2 Reasoning Challenge (25-Shot) 64.59
HellaSwag (10-Shot) 85.29
MMLU (5-Shot) 65.00
TruthfulQA (0-shot) 54.64
Winogrande (5-shot) 82.24
GSM8k (5-shot) 68.08