Edit model card

wav2vec2-xlsr-1b-mecita-portuguese-all-text-os_morcegos

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2362
  • Wer: 0.0807
  • Cer: 0.0310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
15.3961 0.97 14 3.1122 1.0 1.0
15.3961 2.0 29 2.7786 1.0 1.0
15.3961 2.97 43 1.3300 0.7125 0.2734
15.3961 4.0 58 0.4810 0.2523 0.0738
15.3961 4.97 72 0.3453 0.15 0.0503
15.3961 6.0 87 0.2707 0.1114 0.0387
1.9985 6.97 101 0.2410 0.0966 0.0339
1.9985 8.0 116 0.2400 0.0864 0.0318
1.9985 8.97 130 0.2406 0.0739 0.0300
1.9985 10.0 145 0.2534 0.075 0.0306
1.9985 10.97 159 0.2395 0.0807 0.0314
1.9985 12.0 174 0.2366 0.0727 0.0296
1.9985 12.97 188 0.2465 0.0670 0.0282
0.2275 14.0 203 0.2459 0.0716 0.0292
0.2275 14.97 217 0.2362 0.0807 0.0310
0.2275 16.0 232 0.2571 0.0682 0.0292
0.2275 16.97 246 0.2488 0.0670 0.0288
0.2275 18.0 261 0.2506 0.0636 0.0284
0.2275 18.97 275 0.2510 0.0693 0.0288
0.2275 20.0 290 0.2517 0.0682 0.0280
0.1504 20.97 304 0.2621 0.0739 0.0302
0.1504 22.0 319 0.2628 0.075 0.0298
0.1504 22.97 333 0.2672 0.0773 0.0310
0.1504 24.0 348 0.2605 0.075 0.0310
0.1504 24.97 362 0.2644 0.0705 0.0298
0.1504 26.0 377 0.2671 0.0739 0.0308
0.1504 26.97 391 0.2637 0.0705 0.0298
0.1148 28.0 406 0.2730 0.0693 0.0300
0.1148 28.97 420 0.2668 0.0693 0.0296
0.1148 30.0 435 0.2701 0.0693 0.0302
0.1148 30.97 449 0.2696 0.0739 0.0302
0.1148 32.0 464 0.2697 0.0670 0.0284
0.1148 32.97 478 0.2671 0.0682 0.0292
0.1148 34.0 493 0.2667 0.0648 0.0292
0.0937 34.97 507 0.2747 0.0705 0.0296

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.