wav2vec2-xlsr-1b-mecita-portuguese-all-text-os_morcegos
This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2362
- Wer: 0.0807
- Cer: 0.0310
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
15.3961 | 0.97 | 14 | 3.1122 | 1.0 | 1.0 |
15.3961 | 2.0 | 29 | 2.7786 | 1.0 | 1.0 |
15.3961 | 2.97 | 43 | 1.3300 | 0.7125 | 0.2734 |
15.3961 | 4.0 | 58 | 0.4810 | 0.2523 | 0.0738 |
15.3961 | 4.97 | 72 | 0.3453 | 0.15 | 0.0503 |
15.3961 | 6.0 | 87 | 0.2707 | 0.1114 | 0.0387 |
1.9985 | 6.97 | 101 | 0.2410 | 0.0966 | 0.0339 |
1.9985 | 8.0 | 116 | 0.2400 | 0.0864 | 0.0318 |
1.9985 | 8.97 | 130 | 0.2406 | 0.0739 | 0.0300 |
1.9985 | 10.0 | 145 | 0.2534 | 0.075 | 0.0306 |
1.9985 | 10.97 | 159 | 0.2395 | 0.0807 | 0.0314 |
1.9985 | 12.0 | 174 | 0.2366 | 0.0727 | 0.0296 |
1.9985 | 12.97 | 188 | 0.2465 | 0.0670 | 0.0282 |
0.2275 | 14.0 | 203 | 0.2459 | 0.0716 | 0.0292 |
0.2275 | 14.97 | 217 | 0.2362 | 0.0807 | 0.0310 |
0.2275 | 16.0 | 232 | 0.2571 | 0.0682 | 0.0292 |
0.2275 | 16.97 | 246 | 0.2488 | 0.0670 | 0.0288 |
0.2275 | 18.0 | 261 | 0.2506 | 0.0636 | 0.0284 |
0.2275 | 18.97 | 275 | 0.2510 | 0.0693 | 0.0288 |
0.2275 | 20.0 | 290 | 0.2517 | 0.0682 | 0.0280 |
0.1504 | 20.97 | 304 | 0.2621 | 0.0739 | 0.0302 |
0.1504 | 22.0 | 319 | 0.2628 | 0.075 | 0.0298 |
0.1504 | 22.97 | 333 | 0.2672 | 0.0773 | 0.0310 |
0.1504 | 24.0 | 348 | 0.2605 | 0.075 | 0.0310 |
0.1504 | 24.97 | 362 | 0.2644 | 0.0705 | 0.0298 |
0.1504 | 26.0 | 377 | 0.2671 | 0.0739 | 0.0308 |
0.1504 | 26.97 | 391 | 0.2637 | 0.0705 | 0.0298 |
0.1148 | 28.0 | 406 | 0.2730 | 0.0693 | 0.0300 |
0.1148 | 28.97 | 420 | 0.2668 | 0.0693 | 0.0296 |
0.1148 | 30.0 | 435 | 0.2701 | 0.0693 | 0.0302 |
0.1148 | 30.97 | 449 | 0.2696 | 0.0739 | 0.0302 |
0.1148 | 32.0 | 464 | 0.2697 | 0.0670 | 0.0284 |
0.1148 | 32.97 | 478 | 0.2671 | 0.0682 | 0.0292 |
0.1148 | 34.0 | 493 | 0.2667 | 0.0648 | 0.0292 |
0.0937 | 34.97 | 507 | 0.2747 | 0.0705 | 0.0296 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.