Model Card for UltraCM-13b-GGUF
UltraCM-13B is a fine-tuned LLM for completion-critique in order to evaluate LLM outputs on helpfulness, truthfulness, honesty, and to what extent the answer follows the given instructions.
UltraCM-13B is a 13b param LLM that was released by OpenBMB, as part of their paper UltraFeedback: Boosting Language Models with High-quality Feedback.
This model contains the quantized variants using the GGUF format, introduced by the llama.cpp team, and also heavily inspired by TheBloke work on quantizing most of the LLMs out there.
Model Details
Model Description
- Model type: Llama
- Fine-tuned from model: Llama-2-13b-hf
- Created by: Meta AI
- Fine-tuned by: OpenBMB
- Quantized by: alvarobartt
- Language(s) (NLP): English
- License: Apache 2.0
Model Files
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
UltraCM-13b.q4_0.gguf | Q4_0 | 4 | 7.37 GB | 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
UltraCM-13b.q4_k_s.gguf | Q4_K_S | 4 | 7.41 GB | 9.91 GB | small, greater quality loss |
UltraCM-13b.q4_k_m.gguf | Q4_K_M | 4 | 7.87 GB | 10.37 GB | medium, balanced quality - recommended |
UltraCM-13b.q5_0.gguf | Q5_0 | 5 | 8.97 GB | 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
UltraCM-13b.q5_k_s.gguf | Q5_K_S | 5 | 8.97 GB | 11.47 GB | large, low quality loss - recommended |
UltraCM-13b.q5_k_m.gguf | Q5_K_M | 5 | 9.23 GB | 11.73 GB | large, very low quality loss - recommended |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
For more information on quantization, I'd highly suggest anyone reading to go check TheBloke out, as well as joining their Discord server.
Uses
Direct Use
[More Information Needed]
Citation
Since this is only a GGUF-quantization of the original weights, please refer and cite the original authors instead.
@misc{cui2023ultrafeedback,
title={UltraFeedback: Boosting Language Models with High-quality Feedback},
author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun},
year={2023},
eprint={2310.01377},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 149
Model tree for alvarobartt/UltraCM-13B-GGUF
Base model
openbmb/UltraCM-13b