SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
This is a sentence-transformers model finetuned from l3cube-pune/indic-sentence-similarity-sbert on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: l3cube-pune/indic-sentence-similarity-sbert
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
sentences = [
'Then he ran.',
'He then started to run.',
'A man plays the flute.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8609 |
spearman_cosine |
0.8663 |
pearson_manhattan |
0.8587 |
spearman_manhattan |
0.8612 |
pearson_euclidean |
0.8585 |
spearman_euclidean |
0.8611 |
pearson_dot |
0.8259 |
spearman_dot |
0.826 |
pearson_max |
0.8609 |
spearman_max |
0.8663 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8594 |
spearman_cosine |
0.8649 |
pearson_manhattan |
0.8574 |
spearman_manhattan |
0.8599 |
pearson_euclidean |
0.8575 |
spearman_euclidean |
0.8601 |
pearson_dot |
0.8223 |
spearman_dot |
0.8227 |
pearson_max |
0.8594 |
spearman_max |
0.8649 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8506 |
spearman_cosine |
0.8576 |
pearson_manhattan |
0.8528 |
spearman_manhattan |
0.8553 |
pearson_euclidean |
0.8527 |
spearman_euclidean |
0.8551 |
pearson_dot |
0.7944 |
spearman_dot |
0.7964 |
pearson_max |
0.8528 |
spearman_max |
0.8576 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8411 |
spearman_cosine |
0.8505 |
pearson_manhattan |
0.8462 |
spearman_manhattan |
0.849 |
pearson_euclidean |
0.8458 |
spearman_euclidean |
0.8487 |
pearson_dot |
0.7756 |
spearman_dot |
0.7756 |
pearson_max |
0.8462 |
spearman_max |
0.8505 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8177 |
spearman_cosine |
0.8308 |
pearson_manhattan |
0.8292 |
spearman_manhattan |
0.832 |
pearson_euclidean |
0.8311 |
spearman_euclidean |
0.8334 |
pearson_dot |
0.7153 |
spearman_dot |
0.7181 |
pearson_max |
0.8311 |
spearman_max |
0.8334 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8492 |
spearman_cosine |
0.8569 |
pearson_manhattan |
0.8572 |
spearman_manhattan |
0.8566 |
pearson_euclidean |
0.8569 |
spearman_euclidean |
0.8567 |
pearson_dot |
0.7969 |
spearman_dot |
0.7879 |
pearson_max |
0.8572 |
spearman_max |
0.8569 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8507 |
spearman_cosine |
0.8575 |
pearson_manhattan |
0.8564 |
spearman_manhattan |
0.856 |
pearson_euclidean |
0.8562 |
spearman_euclidean |
0.8561 |
pearson_dot |
0.7973 |
spearman_dot |
0.7873 |
pearson_max |
0.8564 |
spearman_max |
0.8575 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8467 |
spearman_cosine |
0.8523 |
pearson_manhattan |
0.8516 |
spearman_manhattan |
0.8516 |
pearson_euclidean |
0.8506 |
spearman_euclidean |
0.8504 |
pearson_dot |
0.7757 |
spearman_dot |
0.7687 |
pearson_max |
0.8516 |
spearman_max |
0.8523 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8377 |
spearman_cosine |
0.8472 |
pearson_manhattan |
0.8466 |
spearman_manhattan |
0.8488 |
pearson_euclidean |
0.8456 |
spearman_euclidean |
0.8472 |
pearson_dot |
0.7503 |
spearman_dot |
0.7416 |
pearson_max |
0.8466 |
spearman_max |
0.8488 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8174 |
spearman_cosine |
0.8316 |
pearson_manhattan |
0.832 |
spearman_manhattan |
0.8347 |
pearson_euclidean |
0.8335 |
spearman_euclidean |
0.8351 |
pearson_dot |
0.6935 |
spearman_dot |
0.6844 |
pearson_max |
0.8335 |
spearman_max |
0.8351 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 10,000 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 4 tokens
- mean: 18.8 tokens
- max: 89 tokens
|
- min: 4 tokens
- mean: 11.84 tokens
- max: 36 tokens
|
- min: 4 tokens
- mean: 12.39 tokens
- max: 38 tokens
|
- Samples:
anchor |
positive |
negative |
Side view of a female triathlete during the run. |
A woman runs |
A man sits |
Confused person standing in the middle of the trolley tracks trying to figure out the signs. |
A person is on the tracks. |
A man sits in an airplane. |
A woman in a black shirt, jean shorts and white tennis shoes is bowling. |
A woman is bowling in casual clothes |
A woman bowling wins an outfit of clothes |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 18.54 tokens
- max: 74 tokens
|
- min: 4 tokens
- mean: 9.97 tokens
- max: 30 tokens
|
- min: 5 tokens
- mean: 10.59 tokens
- max: 29 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A woman drinks her coffee in a small cafe. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.3797 |
30 |
7.9432 |
4.2806 |
0.8509 |
0.8570 |
0.8633 |
0.8311 |
0.8644 |
- |
- |
- |
- |
- |
0.7595 |
60 |
6.1701 |
3.9498 |
0.8505 |
0.8576 |
0.8649 |
0.8308 |
0.8663 |
- |
- |
- |
- |
- |
1.0 |
79 |
- |
- |
- |
- |
- |
- |
- |
0.8472 |
0.8523 |
0.8575 |
0.8316 |
0.8569 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}