Edit model card

clearpolicy-llama-3-8binstruct-v4

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 7 1.2237
No log 2.0 14 0.8634
No log 3.0 21 0.7050
No log 4.0 28 0.7051

Framework versions

  • PEFT 0.11.0
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for andre-fichel/clearpolicy-llama-3-8binstruct-v4

Adapter
(90)
this model