Edit model card

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8091
  • Wer: 17.7875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2528 0.2 2000 0.9370 22.1311
0.2718 0.4 4000 0.8721 24.9294
0.2745 0.6 6000 0.8770 20.5292
0.2157 0.8 8000 0.8774 18.1018
0.1729 1.0 10000 0.8091 17.7875

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using arbml/whisper-largev2-ar 2

Evaluation results