Clown-DPO-Extended / README.md
Mark-Arcee's picture
Update README.md
a6c74a9 verified
metadata
license: apache-2.0
base_model:
  - CorticalStack/pastiche-crown-clown-7b-dare-dpo
library_name: transformers
tags:
  - mergekit
  - merge
  - CorticalStack/pastiche-crown-clown-7b-dare-dpo

Extended Model

This is a extension of a pre-trained language models created using mergekit.

image/webp

Merge Details

Merge Method

This method employs mergekit's passthrough method to expand blocks within the "CorticalStack/pastiche-crown-clown-7b-dare-dpo" model. For every 5th layer, a new layer is added, with the o_proj and down_proj parameters of these added layers initialized to zero, mirroring the approach used in LLaMA Pro.

It's important to note that this configuration has not undergone fine-tuning. Therefore, when fine-tuning, ensure that only every 5th layer is trainable, while all other layers remain frozen.

Models Merged

The following models were included in the merge:

πŸ† Evaluation

OpenLLM

CorticalStack/pastiche-crown-clown-7b-dare-dpo OpenLLM benchmark suite

Model Average arc HellaSwag mmlu TruthfulQA gsm8k
CorticalStack/pastiche-crown-clown-7b-dare-dpo 76.93 72.18 88.90 63.45 79.15 85.71

Configuration

The following YAML configuration was used to produce this model:


  slices:
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 0
          - 4
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 3
          - 4
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 4
          - 8
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 7
          - 8
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 8
          - 12
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 11
          - 12
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 12
          - 16
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 15
          - 16
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 16
          - 20
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 19
          - 20
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 20
          - 24
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 23
          - 24
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 24
          - 28
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 27
          - 28
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 28
          - 32
  - sources:
      - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo
        layer_range:
          - 31
          - 32
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  merge_method: passthrough
  dtype: bfloat16

Function to freeze layers

from transformers import AutoModelForCausalLM

def enable_grad_only_every_nth(model, n):
    """
    This function configures the specified model to enable gradient calculations exclusively for every nth layer, starting 
    from the first layer (0-indexed), to accommodate newly added blocks for training. Concurrently, it freezes the gradients 
    for all other components of the model, including the embedding layers and the model's head. This setup is particularly 
    useful for fine-tuning processes where only a subset of layers are targeted for updates, ensuring efficient training and 
    adaptation of newly integrated layers while maintaining the pre-trained behavior of other model components.
    """

    # Freeze embeddings.
    for param in model.model.embed_tokens.parameters():
        param.requires_grad = False

    # Freeze lm_head.
    for param in model.lm_head.parameters():
        param.requires_grad = False

    # Enable gradients for every nth layer
    layers = model.model.layers  # Access the ModuleList containing the layers

    for index, layer in enumerate(layers):

        if (index + 1) % n == 0:  # Enables gradients for every nth layer, starting from the layer after the 0th
            for param in layer.parameters():
                param.requires_grad = True
        else:
            for param in layer.parameters():
                param.requires_grad = False

model = transformers.AutoModelForCausalLM.from_pretrained(
    "arcee-ai/Mistral-7B-Instruct-v0.2-expanded"
    )
# Update layer gradients, specify the correct value for n based on your model's architecture
n =5
enable_grad_only_every_nth(model, n)