leaderboard-pr-bot's picture
Adding Evaluation Results
9293269 verified
|
raw
history blame
6.76 kB
---
language:
- en
license: apache-2.0
library_name: trl
tags:
- distilabel
- dpo
- rlaif
- rlhf
datasets:
- argilla/dpo-mix-7k
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: CapybaraHermes-2.5-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.91
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
name: Open LLM Leaderboard
---
# CapybaraHermes-2.5-Mistral-7B
<div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png">
</div>
<p align="center">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B).
CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k).
To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench:
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. |
|-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------|
| argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** |
| teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 |
| Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 |
The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores.
For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference):
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66|
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Argilla
- **Shared by [optional]:** Argilla
- **Model type:** 7B chat model
- **Language(s) (NLP):** English
- **License:** Same as OpenHermes
- **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_argilla__CapybaraHermes-2.5-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.14|
|AI2 Reasoning Challenge (25-Shot)|65.78|
|HellaSwag (10-Shot) |85.45|
|MMLU (5-Shot) |63.13|
|TruthfulQA (0-shot) |56.91|
|Winogrande (5-shot) |78.30|
|GSM8k (5-shot) |59.29|