MAScIR_elderly_whisper-medium-LoRA-data-augmented
This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0358
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8119 | 0.09 | 100 | 0.2422 |
0.7907 | 0.19 | 200 | 0.2357 |
0.6762 | 0.28 | 300 | 0.2311 |
0.7081 | 0.38 | 400 | 0.2256 |
0.5623 | 0.47 | 500 | 0.1946 |
0.569 | 0.57 | 600 | 0.1697 |
9.0833 | 0.66 | 700 | 8.1242 |
6.1681 | 0.76 | 800 | 5.9288 |
5.5565 | 0.85 | 900 | 4.9360 |
2.0714 | 0.95 | 1000 | 0.2584 |
0.6051 | 1.04 | 1100 | 0.2062 |
0.485 | 1.14 | 1200 | 0.1824 |
0.637 | 1.23 | 1300 | 0.1522 |
0.5521 | 1.33 | 1400 | 0.1371 |
0.3999 | 1.42 | 1500 | 0.1331 |
0.4788 | 1.52 | 1600 | 0.1344 |
0.3738 | 1.61 | 1700 | 0.0952 |
0.3046 | 1.71 | 1800 | 0.0871 |
0.4335 | 1.8 | 1900 | 0.0770 |
0.3876 | 1.9 | 2000 | 0.0654 |
0.4226 | 1.99 | 2100 | 0.0638 |
0.2651 | 2.09 | 2200 | 0.0612 |
0.2075 | 2.18 | 2300 | 0.0541 |
0.2464 | 2.28 | 2400 | 0.0473 |
0.1797 | 2.37 | 2500 | 0.0482 |
0.2393 | 2.47 | 2600 | 0.0428 |
0.1764 | 2.56 | 2700 | 0.0396 |
0.1398 | 2.66 | 2800 | 0.0390 |
0.1855 | 2.75 | 2900 | 0.0382 |
0.232 | 2.85 | 3000 | 0.0369 |
0.2 | 2.94 | 3100 | 0.0358 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
Model tree for aviroes/MAScIR_elderly_whisper-medium-LoRA-data-augmented
Base model
openai/whisper-medium