ayberkuckun's picture
Add new SentenceTransformer model.
470a353 verified
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:100K<n<1M
  - loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
widget:
  - source_sentence: The truth?
    sentences:
      - Is that true?
      - Some kids are napping.
      - A dog is taking a nap.
  - source_sentence: Just a bike
    sentences:
      - A child is riding a bike.
      - A man is wearing white.
      - A man is sleeping.
  - source_sentence: girl sleeps
    sentences:
      - A girl sleeps
      - That doesn't seem fair.
      - A man is running a race
  - source_sentence: Double pig.
    sentences:
      - The pig tripled.
      - I hated talking to you.
      - a woman is sleeping
  - source_sentence: a dog sleeps
    sentences:
      - a dog sleep under a tree.
      - Tommy didn't know, who.
      - A man is on a canoe.
pipeline_tag: sentence-similarity
model-index:
  - name: MPNet base trained on AllNLI triplets
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli dev
          type: all-nli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.917831105710814
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.07867557715674361
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.9138821385176185
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.9147934386391251
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.917831105710814
            name: Max Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli test
          type: all-nli-test
        metrics:
          - type: cosine_accuracy
            value: 0.9276743834165532
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.06733242548040551
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.9255560599182933
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.9234377364200332
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.9276743834165532
            name: Max Accuracy

MPNet base trained on AllNLI triplets

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ayberkuckun/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'a dog sleeps',
    'a dog sleep under a tree.',
    "Tommy didn't know, who.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9178
dot_accuracy 0.0787
manhattan_accuracy 0.9139
euclidean_accuracy 0.9148
max_accuracy 0.9178

Triplet

Metric Value
cosine_accuracy 0.9277
dot_accuracy 0.0673
manhattan_accuracy 0.9256
euclidean_accuracy 0.9234
max_accuracy 0.9277

Training Details

Training Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at d482672
  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.46 tokens
    • max: 46 tokens
    • min: 6 tokens
    • mean: 12.81 tokens
    • max: 40 tokens
    • min: 5 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 17.95 tokens
    • max: 63 tokens
    • min: 4 tokens
    • mean: 9.78 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.35 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss all-nli-dev_max_accuracy all-nli-test_max_accuracy
0 0 - - 0.6832 -
0.016 100 3.1461 1.6989 0.7708 -
0.032 200 1.3308 0.9213 0.8010 -
0.048 300 1.4333 0.8036 0.8117 -
0.064 400 0.8862 0.7591 0.8132 -
0.08 500 0.8292 0.8372 0.8045 -
0.096 600 1.0852 0.8512 0.8018 -
0.112 700 0.9157 0.8736 0.8118 -
0.128 800 1.0996 0.9799 0.7924 -
0.144 900 1.1212 0.9036 0.8171 -
0.16 1000 1.0296 0.8890 0.7922 -
0.176 1100 1.1005 1.0113 0.7922 -
0.192 1200 1.03 0.8993 0.8068 -
0.208 1300 0.824 0.8918 0.7966 -
0.224 1400 0.7829 0.8369 0.8070 -
0.24 1500 0.8878 0.7897 0.8098 -
0.256 1600 0.7346 0.8386 0.8127 -
0.272 1700 0.892 0.9013 0.8092 -
0.288 1800 0.8553 0.8347 0.8130 -
0.304 1900 0.8208 0.8359 0.8150 -
0.32 2000 0.737 0.7469 0.8636 -
0.336 2100 0.6301 0.7850 0.8442 -
0.352 2200 0.662 0.6924 0.8648 -
0.368 2300 0.8195 0.7686 0.8509 -
0.384 2400 0.7525 0.7049 0.8603 -
0.4 2500 0.6834 0.7109 0.8618 -
0.416 2600 0.5977 0.6715 0.8589 -
0.432 2700 0.8432 0.7482 0.8597 -
0.448 2800 0.8676 0.6765 0.8575 -
0.464 2900 0.8342 0.6336 0.8773 -
0.48 3000 0.7155 0.6320 0.8789 -
0.496 3100 0.762 0.6094 0.8697 -
0.512 3200 0.5909 0.5915 0.8748 -
0.528 3300 0.5679 0.5382 0.8881 -
0.544 3400 0.5163 0.5617 0.8891 -
0.56 3500 0.5164 0.5627 0.8960 -
0.576 3600 0.519 0.5236 0.8917 -
0.592 3700 0.5327 0.5305 0.8998 -
0.608 3800 0.4958 0.5071 0.8990 -
0.624 3900 0.503 0.5242 0.8919 -
0.64 4000 0.7307 0.5176 0.9033 -
0.656 4100 0.9127 0.5168 0.9039 -
0.672 4200 0.8677 0.4683 0.9102 -
0.688 4300 0.6641 0.4549 0.9083 -
0.704 4400 0.586 0.4447 0.9092 -
0.72 4500 0.5447 0.4516 0.9084 -
0.736 4600 0.5895 0.4432 0.9104 -
0.752 4700 0.643 0.4479 0.9089 -
0.768 4800 0.6011 0.4310 0.9110 -
0.784 4900 0.5494 0.4417 0.9048 -
0.8 5000 0.6382 0.4628 0.9102 -
0.816 5100 0.5265 0.4355 0.9137 -
0.832 5200 0.5791 0.4165 0.9111 -
0.848 5300 0.5133 0.4276 0.9137 -
0.864 5400 0.634 0.4434 0.9083 -
0.88 5500 0.5405 0.4266 0.9086 -
0.896 5600 0.5374 0.4239 0.9102 -
0.912 5700 0.5969 0.4134 0.9137 -
0.928 5800 0.5549 0.4029 0.9159 -
0.944 5900 0.6575 0.4032 0.9165 -
0.96 6000 0.756 0.4116 0.9172 -
0.976 6100 0.6343 0.4069 0.9177 -
0.992 6200 0.0003 0.4065 0.9178 -
1.0 6250 - - - 0.9277

Framework Versions

  • Python: 3.11.7
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}