metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: The truth?
sentences:
- Is that true?
- Some kids are napping.
- A dog is taking a nap.
- source_sentence: Just a bike
sentences:
- A child is riding a bike.
- A man is wearing white.
- A man is sleeping.
- source_sentence: girl sleeps
sentences:
- A girl sleeps
- That doesn't seem fair.
- A man is running a race
- source_sentence: Double pig.
sentences:
- The pig tripled.
- I hated talking to you.
- a woman is sleeping
- source_sentence: a dog sleeps
sentences:
- a dog sleep under a tree.
- Tommy didn't know, who.
- A man is on a canoe.
pipeline_tag: sentence-similarity
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.917831105710814
name: Cosine Accuracy
- type: dot_accuracy
value: 0.07867557715674361
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9138821385176185
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9147934386391251
name: Euclidean Accuracy
- type: max_accuracy
value: 0.917831105710814
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9276743834165532
name: Cosine Accuracy
- type: dot_accuracy
value: 0.06733242548040551
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9255560599182933
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9234377364200332
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9276743834165532
name: Max Accuracy
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ayberkuckun/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'a dog sleeps',
'a dog sleep under a tree.',
"Tommy didn't know, who.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9178 |
dot_accuracy | 0.0787 |
manhattan_accuracy | 0.9139 |
euclidean_accuracy | 0.9148 |
max_accuracy | 0.9178 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9277 |
dot_accuracy | 0.0673 |
manhattan_accuracy | 0.9256 |
euclidean_accuracy | 0.9234 |
max_accuracy | 0.9277 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6832 | - |
0.016 | 100 | 3.1461 | 1.6989 | 0.7708 | - |
0.032 | 200 | 1.3308 | 0.9213 | 0.8010 | - |
0.048 | 300 | 1.4333 | 0.8036 | 0.8117 | - |
0.064 | 400 | 0.8862 | 0.7591 | 0.8132 | - |
0.08 | 500 | 0.8292 | 0.8372 | 0.8045 | - |
0.096 | 600 | 1.0852 | 0.8512 | 0.8018 | - |
0.112 | 700 | 0.9157 | 0.8736 | 0.8118 | - |
0.128 | 800 | 1.0996 | 0.9799 | 0.7924 | - |
0.144 | 900 | 1.1212 | 0.9036 | 0.8171 | - |
0.16 | 1000 | 1.0296 | 0.8890 | 0.7922 | - |
0.176 | 1100 | 1.1005 | 1.0113 | 0.7922 | - |
0.192 | 1200 | 1.03 | 0.8993 | 0.8068 | - |
0.208 | 1300 | 0.824 | 0.8918 | 0.7966 | - |
0.224 | 1400 | 0.7829 | 0.8369 | 0.8070 | - |
0.24 | 1500 | 0.8878 | 0.7897 | 0.8098 | - |
0.256 | 1600 | 0.7346 | 0.8386 | 0.8127 | - |
0.272 | 1700 | 0.892 | 0.9013 | 0.8092 | - |
0.288 | 1800 | 0.8553 | 0.8347 | 0.8130 | - |
0.304 | 1900 | 0.8208 | 0.8359 | 0.8150 | - |
0.32 | 2000 | 0.737 | 0.7469 | 0.8636 | - |
0.336 | 2100 | 0.6301 | 0.7850 | 0.8442 | - |
0.352 | 2200 | 0.662 | 0.6924 | 0.8648 | - |
0.368 | 2300 | 0.8195 | 0.7686 | 0.8509 | - |
0.384 | 2400 | 0.7525 | 0.7049 | 0.8603 | - |
0.4 | 2500 | 0.6834 | 0.7109 | 0.8618 | - |
0.416 | 2600 | 0.5977 | 0.6715 | 0.8589 | - |
0.432 | 2700 | 0.8432 | 0.7482 | 0.8597 | - |
0.448 | 2800 | 0.8676 | 0.6765 | 0.8575 | - |
0.464 | 2900 | 0.8342 | 0.6336 | 0.8773 | - |
0.48 | 3000 | 0.7155 | 0.6320 | 0.8789 | - |
0.496 | 3100 | 0.762 | 0.6094 | 0.8697 | - |
0.512 | 3200 | 0.5909 | 0.5915 | 0.8748 | - |
0.528 | 3300 | 0.5679 | 0.5382 | 0.8881 | - |
0.544 | 3400 | 0.5163 | 0.5617 | 0.8891 | - |
0.56 | 3500 | 0.5164 | 0.5627 | 0.8960 | - |
0.576 | 3600 | 0.519 | 0.5236 | 0.8917 | - |
0.592 | 3700 | 0.5327 | 0.5305 | 0.8998 | - |
0.608 | 3800 | 0.4958 | 0.5071 | 0.8990 | - |
0.624 | 3900 | 0.503 | 0.5242 | 0.8919 | - |
0.64 | 4000 | 0.7307 | 0.5176 | 0.9033 | - |
0.656 | 4100 | 0.9127 | 0.5168 | 0.9039 | - |
0.672 | 4200 | 0.8677 | 0.4683 | 0.9102 | - |
0.688 | 4300 | 0.6641 | 0.4549 | 0.9083 | - |
0.704 | 4400 | 0.586 | 0.4447 | 0.9092 | - |
0.72 | 4500 | 0.5447 | 0.4516 | 0.9084 | - |
0.736 | 4600 | 0.5895 | 0.4432 | 0.9104 | - |
0.752 | 4700 | 0.643 | 0.4479 | 0.9089 | - |
0.768 | 4800 | 0.6011 | 0.4310 | 0.9110 | - |
0.784 | 4900 | 0.5494 | 0.4417 | 0.9048 | - |
0.8 | 5000 | 0.6382 | 0.4628 | 0.9102 | - |
0.816 | 5100 | 0.5265 | 0.4355 | 0.9137 | - |
0.832 | 5200 | 0.5791 | 0.4165 | 0.9111 | - |
0.848 | 5300 | 0.5133 | 0.4276 | 0.9137 | - |
0.864 | 5400 | 0.634 | 0.4434 | 0.9083 | - |
0.88 | 5500 | 0.5405 | 0.4266 | 0.9086 | - |
0.896 | 5600 | 0.5374 | 0.4239 | 0.9102 | - |
0.912 | 5700 | 0.5969 | 0.4134 | 0.9137 | - |
0.928 | 5800 | 0.5549 | 0.4029 | 0.9159 | - |
0.944 | 5900 | 0.6575 | 0.4032 | 0.9165 | - |
0.96 | 6000 | 0.756 | 0.4116 | 0.9172 | - |
0.976 | 6100 | 0.6343 | 0.4069 | 0.9177 | - |
0.992 | 6200 | 0.0003 | 0.4065 | 0.9178 | - |
1.0 | 6250 | - | - | - | 0.9277 |
Framework Versions
- Python: 3.11.7
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}