Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9490
  • Accuracy: {'accuracy': 0.896}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4908 {'accuracy': 0.865}
0.4238 2.0 500 0.3895 {'accuracy': 0.884}
0.4238 3.0 750 0.7152 {'accuracy': 0.878}
0.1877 4.0 1000 0.6360 {'accuracy': 0.898}
0.1877 5.0 1250 0.7666 {'accuracy': 0.897}
0.0805 6.0 1500 0.8102 {'accuracy': 0.891}
0.0805 7.0 1750 0.8150 {'accuracy': 0.89}
0.0283 8.0 2000 0.9224 {'accuracy': 0.893}
0.0283 9.0 2250 0.9227 {'accuracy': 0.894}
0.0148 10.0 2500 0.9490 {'accuracy': 0.896}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for barathsmart/distilbert-base-uncased-lora-text-classification

Adapter
(191)
this model