distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9490
- Accuracy: {'accuracy': 0.896}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4908 | {'accuracy': 0.865} |
0.4238 | 2.0 | 500 | 0.3895 | {'accuracy': 0.884} |
0.4238 | 3.0 | 750 | 0.7152 | {'accuracy': 0.878} |
0.1877 | 4.0 | 1000 | 0.6360 | {'accuracy': 0.898} |
0.1877 | 5.0 | 1250 | 0.7666 | {'accuracy': 0.897} |
0.0805 | 6.0 | 1500 | 0.8102 | {'accuracy': 0.891} |
0.0805 | 7.0 | 1750 | 0.8150 | {'accuracy': 0.89} |
0.0283 | 8.0 | 2000 | 0.9224 | {'accuracy': 0.893} |
0.0283 | 9.0 | 2250 | 0.9227 | {'accuracy': 0.894} |
0.0148 | 10.0 | 2500 | 0.9490 | {'accuracy': 0.896} |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for barathsmart/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased