Could EXL2 quantization hurt multilinguality?

#1
by Handgun1773 - opened

I've encountered an interesting discrepancy in AI model performance on a French mathematics problem:

  1. The Qwen 2.5 14B Q4_K_M model successfully solved the problem zero-shot (on its first attempt).

  2. In contrast, both 4 and 5 bpw EXL2 quantized models from you and Lone Stricker initially failed to solve the problem.

  3. Interestingly, the EXL2 models' failure stemmed from misunderstanding the initial problem statement. Once I corrected their misinterpretation, they were able to perform the mathematical calculations correctly, much like the Q4_K_M model did on its first try.

This observation leads me to a question: Could the calibration process of EXL2 quantized models, which is typically conducted in English, potentially impair their multilingual capabilities? Specifically, might this affect their ability to comprehend prompts in other languages, such as French in this case?

I'm curious about your thoughts on this potential connection between English-based calibration and multilingual performance in AI models.

English

Prompt

I have a room of 7 by 8, which is 38.5 square meters, calculate the real value of the 7 and 8 (7/8 is the proportion).

Response exl2 5bpw

To clarify, if your room is described as 7 by 8 and you mention that it is 38.5 square meters, it seems there might be a misunderstanding or a mix-up in the units or the description. Typically, a room described as 7 by 8 would imply dimensions of 7 meters by 8 meters, which would give an area of \(7 \times 8 = 56\) square meters, not 38.5 square meters.

However, if you're looking to find the actual dimensions based on the area of 38.5 square meters and a 7:8 ratio, we can solve this as follows:

Let's denote the actual dimensions as \(7x\) and \(8x\), where \(x\) is a scaling factor. The area of the room would then be:
\[ (7x) \times (8x) = 38.5 \]
\[ 56x^2 = 38.5 \]
\[ x^2 = \frac{38.5}{56} \]
\[ x^2 = 0.6875 \]
\[ x = \sqrt{0.6875} \]
\[ x \approx 0.829 \]

So, the actual dimensions would be:
\[ 7x \approx 7 \times 0.829 = 5.803 \, \text{meters} \]
\[ 8x \approx 8 \times 0.829 = 6.632 \, \text{meters} \]

Therefore, the real values for the dimensions, maintaining the 7:8 ratio and achieving an area of 38.5 square meters, would be approximately 5.803 meters and 6.632 meters.

Response gguf q4_k_m (from official ollama)

To determine the actual dimensions of the room given that it has an area of 38.5 square meters and a proportional relationship between its length and width, we can follow these steps:

1. **Define Variables:**
   Let \( x \) be the scaling factor for the dimensions.
   Then the dimensions of the room are \( 7x \) by \( 8x \).

2. **Set Up the Area Equation:**
   The area of the rectangle is given by:
   \[
   (7x)(8x) = 38.5
   \]
   Simplifying this, we get:
   \[
   56x^2 = 38.5
   \]

3. **Solve for \( x^2 \):**
   Divide both sides by 56 to isolate \( x^2 \):
   \[
   x^2 = \frac{38.5}{56}
   \]
   Simplify the fraction:
   \[
   x^2 = \frac{77}{112} = \frac{11}{16}
   \]

4. **Solve for \( x \):**
   Take the square root of both sides to find \( x \):
   \[
   x = \sqrt{\frac{11}{16}} = \frac{\sqrt{11}}{4}
   \]

5. **Calculate the Actual Dimensions:**
   The actual dimensions are:
   - Length: \( 7x = 7 \times \frac{\sqrt{11}}{4} = \frac{7\sqrt{11}}{4} \)
   - Width: \( 8x = 8 \times \frac{\sqrt{11}}{4} = 2\sqrt{11} \)

6. **Numerical Approximation (if needed):**
   To get numerical values:
   \[
   x \approx \frac{\sqrt{11}}{4} \approx \frac{3.317}{4} \approx 0.829
   \]
   - Length: \( 7x \approx 7 \times 0.829 = 5.803 \) meters
   - Width: \( 8x \approx 8 \times 0.829 = 6.632 \) meters

So, the actual dimensions of the room are approximately:
- Length: \( \frac{7\sqrt{11}}{4} \) meters (or about 5.803 meters)
- Width: \( 2\sqrt{11} \) meters (or about 6.632 meters)

These dimensions satisfy the given area of 38.5 square meters and maintain the proportional relationship between the length and width as specified.

French

Prompt

J'ai une pièce de 7 sur 8, qui fait 38.5 mètres carrés, calcule la valeur réelle du 7 et 8 (7/8 c'est la proportion).

Response exl2 5bpw

Pour résoudre ce problème, nous devons comprendre que la pièce a une surface totale de 38.5 mètres carrés et que cette surface représente 7/8 de la surface totale maximale que nous cherchons à déterminer. 

Pour trouver la surface totale maximale (que nous appellerons \( S \)), nous pouvons utiliser la relation suivante :

\[
\frac{7}{8} \times S = 38.5
\]

Pour isoler \( S \), nous devons diviser les deux côtés de l'équation par \( \frac{7}{8} \) :

\[
S = \frac{38.5}{\frac{7}{8}} = 38.5 \times \frac{8}{7}
\]

Calculons cela :

\[
S = 38.5 \times \frac{8}{7} = 38.5 \times 1.142857 \approx 44
\]

Donc, la surface totale maximale est de 44 mètres carrés.

Maintenant, pour trouver la valeur de la partie manquante (qui représente \( \frac{1}{8} \) de la surface totale), nous pouvons calculer :

\[
\frac{1}{8} \times S = \frac{1}{8} \times 44 = 5.5
\]

Donc, la valeur de la partie manquante est de 5.5 mètres carrés.

Résumé :
- La surface totale maximale est de 44 mètres carrés.
- La partie manquante (1/8 de la surface totale) est de 5.5 mètres carrés.

Response gguf q4_k_m (from official ollama)

Pour calculer les dimensions exactes d'une pièce basée sur le ratio 7:8 et l'aire totale de 38.5 m², nous devons résoudre un système d'équations.

Soit \( L \) la longueur (correspondant au côté "8") et \( W \) la largeur (correspondant au côté "7").

Le ratio est donné par :
\[ \frac{W}{L} = \frac{7}{8} \]
ou
\[ W = \frac{7}{8} L \]

La surface de la pièce est donnée par :
\[ L \times W = 38.5 \]

En substituant \( W \) dans l'équation de la surface, nous obtenons :
\[ L \times \left( \frac{7}{8} L \right) = 38.5 \]
\[ \frac{7}{8} L^2 = 38.5 \]

Pour résoudre pour \( L \), multiplions les deux côtés par \( \frac{8}{7} \):
\[ L^2 = 38.5 \times \frac{8}{7} \]
\[ L^2 = 44 \]
\[ L = \sqrt{44} \]
\[ L \approx 6.63 \, \text{mètres} \]

Maintenant que nous avons \( L \), nous pouvons calculer \( W \) :
\[ W = \frac{7}{8} L \]
\[ W = \frac{7}{8} \times 6.63 \approx 5.72 \, \text{mètres} \]

Donc, les dimensions de la pièce sont approximativement :
- Longueur \( L \) : 6.63 mètres
- Largeur \( W \) : 5.72 mètres

Ces valeurs correspondent au ratio 7:8 et donnent une surface totale d'environ 38.5 m².

It feels like it shouldn't but it is possible. I've run a couple small tests for imatrix to see if multilingual performance drops and it didn't seem to, but exl2 uses calibration to a higher level.

Testing this will be on my to-do list when I get home

Another interesting result :

(problem generated by claude)

French

Un ascenseur spatial est installé sur l'équateur terrestre. Une balle de golf de masse m = 45,93 g est lâchée depuis le sommet de l'ascenseur, à une altitude h = 35786 km au-dessus de la surface de la Terre. La résistance de l'air est négligeable tout au long de la chute.
Calculez la vitesse de la balle (en km/h, arrondie à l'entier le plus proche) lorsqu'elle atteint une altitude égale au rayon de la Terre.
Données :
Rayon de la Terre : R = 6371 km
Constante gravitationnelle : G = 6,674 × 10⁻¹¹ N(m/kg)²
Masse de la Terre : M = 5,972 × 10²⁴ kg

English

A space elevator is installed on Earth's equator. A golf ball with a mass of m = 45.93 g is released from the top of the elevator, at an altitude of h = 35,786 km above Earth's surface. Air resistance is negligible throughout the fall.
Calculate the speed of the ball (in km/h, rounded to the nearest integer) when it reaches an altitude equal to Earth's radius.
Given:
Earth's radius: R = 6371 km
Gravitational constant: G = 6.674 × 10⁻¹¹ N(m/kg)²
Earth's mass: M = 5.972 × 10²⁴ kg

Results (km/h)

Version qwen 14b q4_k_m qwen 14b 5 bpw claude o1-mini
French 11,858 366,336 32,024 37,100
English 37,548 36,000 32,112 37 ,100

Now the only thing I can say is that it seems dumber in French. It would be an interesting comparison to run multiple problems through different quants, types of quants, and languages.
Funny thing, Claude generated the problem, but seem to give the wrong answere (I didn't verify it myself tho, Claude might be right)

Yeah so this may be evidence that exl2's calibration can more adversely affect multilingual support than GGUF imatrix.. I'm very curious and will have to try it out

Could the calibration process of EXL2 quantized models, which is typically conducted in English

This is incorrect. EXL2's default calibration data is multilingual and also includes random and scrambled data.

Also, this is a stochastic process, so one test doesn't tell you anything. You're essentially rolling two identical dice and getting two different results :shrug:. You'll need to roll many times to demonstrate that the dice themselves are different. And since sampling in this case introduces bias you have to control for that as well by making sure sampling parameters are equivalent for both.

Well there you have it haha, from the horses mouth!

Could the calibration process of EXL2 quantized models, which is typically conducted in English

This is incorrect. EXL2's default calibration data is multilingual and also includes random and scrambled data.

Also, this is a stochastic process, so one test doesn't tell you anything. You're essentially rolling two identical dice and getting two different results :shrug:. You'll need to roll many times to demonstrate that the dice themselves are different. And since sampling in this case introduces bias you have to control for that as well by making sure sampling parameters are equivalent for both.

Yes you are right, I figured it running other examples. The first test I did with this one prompt seemed to point that the model is worse with exl2, even more in French, but subsequent tests showed that this varies with the prompt. With one example, qwen2.5 14 even seemed to be better than mistral large 2!

Still, it would still be great to see more benchmark run on different quants and quants type of the same model, as well as in different languages (even if it is not a trivial task to “translate” a benchmark, since the translation itself would be benchmarked then).

By the way, thanks for the great work @bartowski @turboderp

Handgun1773 changed discussion status to closed

FWIW I got this from the 5.0bpw model with default sampling settings:

User: J'ai une pièce de 7 sur 8, qui fait 38.5 mètres carrés, calcule la valeur réelle du 7 et 8 (7/8 c'est la proportion).

Pour trouver la valeur réelle des dimensions qui forment 38.5 mètres carrés lorsque leur rapport est de 7 à 8, nous pouvons procéder comme suit :

1. Supposons que la longueur soit représentée par \( 8x \) et la largeur par \( 7x \). 
2. Le produit de ces deux valeurs donne l'aire totale :
   \[
   8x \times 7x = 38.5
   \]
3. Simplifions l'équation :
   \[
   56x^2 = 38.5
   \]
4. Résolvons pour \( x^2 \) :
   \[
   x^2 = \frac{38.5}{56} = 0.6875
   \]
5. Calculons \( x \) :
   \[
   x = \sqrt{0.6875} \approx 0.829
   \]

Maintenant, nous pouvons trouver les valeurs réelles de la longueur et de la largeur :

- La largeur est \( 7x \) :
  \[
  7 \times 0.829 \approx 5.803 \text{ mètres}
  \]

- La longueur est \( 8x \) :
  \[
  8 \times 0.829 \approx 6.632 \text{ mètres}
  \]

Les dimensions réelles sont donc approximativement :
- Largeur : 5.803 mètres
- Longueur : 6.632 mètres

Ce qui donne un aire de :
\[
5.803 \times 6.632 \approx 38.5 \text{ mètres carrés}
\]

Donc, la valeur réelle de 7 est environ 5.803 mètres et la valeur réelle de 8 est environ 6.632 mètres.

It is hit and miss, of course, and while it gets the right answer more often in English, that's not too surprising for a 14B model, and it's the same for the unquantized model. Here's an example of the unquantized model misunderstanding the question:

User: J'ai une pièce de 7 sur 8, qui fait 38.5 mètres carrés, calcule la valeur réelle du 7 et 8 (7/8 c'est la proportion).

Pour trouver la valeur réelle de 7 et 8 qui correspond à la proportion 7/8 de la pièce de 38.5 mètres carrés, on peut procéder comme suit :

La pièce est de 38.5 mètres carrés, et cette valeur représente la fraction 7/8 de la valeur totale.

Soit \( x \) la valeur totale (laquelle, dans ce contexte, pourrait représenter par exemple le total de la surface si nous l'avons divisé en parts de 7 et 8).

Donc, on a :
\[ \frac{7}{8}x = 38.5 \]

Pour trouver \( x \), on multiplie les deux côtés de l'équation par \(\frac{8}{7}\) :
\[ x = 38.5 \times \frac{8}{7} \]

Calculons \( x \) :
\[ x = 38.5 \times \frac{8}{7} = 38.5 \times 1.142857... = 44 \]

Donc, la valeur totale \( x \) est de 44 mètres carrés.

Maintenant, pour trouver la valeur correspondant à 7 et 8 :
- La valeur correspondant à 7 de la fraction est :
\[ \frac{7}{8} \times 44 = 38.5 \] (ce qui confirme notre donnée initiale)
- La valeur correspondant à 8 de la fraction est :
\[ \frac{8}{8} \times 44 = 44 \]

Donc, la valeur correspondant à 7 est 38.5 mètres carrés (ce qui est notre donnée initiale, vérifiant notre calcul), et la valeur correspondant à 8 est 44 mètres carrés.

Ainsi, la valeur réelle de 7 et 8 est de 38.5 mètres carrés et 44 mètres carrés respectivement.

In fact the unquantized model rarely seems to correctly understand the French prompt right (maybe 10-20% of the time?), so I tried stating it a little more precisely. Can't judge the quality of the text, but I counted how many runs gave the right answer to within two significant digits in a couple of languages:

temperature: 0.5
top-P: 0.75

English: I have a rectangular room with side lengths in a 7:8 ratio and an area of 38.5 square meters. What are the dimensions of the room?
French: J'ai une pièce rectangulaire avec des côtés dans un rapport de 7:8 et une superficie de 38,5 mètres carrés. Quelles sont les dimensions de la pièce ?
Spanish: Tengo una habitación rectangular cuyos lados tienen una proporción de 7:8 y un área de 38,5 metros cuadrados. ¿Cuáles son las dimensiones de la habitación?
Esperanto: Mi havas rektangulan ĉambron kun flankaj longoj en proporcio 7:8 kaj areo de 38,5 kvadrataj metroj. Kio estas la dimensioj de la ĉambro?
Mongolian: Би тэгш өнцөгт өрөөтэй, хажуугийн урт нь 7: 8 харьцаатай, 38.5 квадрат метр талбайтай. Өрөөний хэмжээ хэд вэ?
Swahili: Nina chumba cha mstatili na urefu wa upande katika uwiano wa 7: 8 na eneo la mita za mraba 38.5. Je, ni vipimo gani vya chumba?
Zulu: Nginegumbi elingunxande elinobude obuseceleni ngesilinganiso esingu-7:8 kanye nendawo engamamitha-skwele angama-38.5. Bungakanani ubukhulu begumbi?
Language FP16 EXL2 5.0bpw
English 10/10 10/10
French 9/10 10/10
Spanish 10/10 10/10
Esperanto 10/10 10/10
Mongolian 10/10 10/10
Swahili 6/10 5/10
Zulu 0/10 0/10

Sign up or log in to comment