language: | |
- en | |
license: apache-2.0 | |
tags: | |
- image-to-text | |
# PARSeq small v1.0 | |
PARSeq model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. | |
## Model description | |
PARSeq (Permuted Autoregressive Sequence) models unify the prevailing modeling/decoding schemes in Scene Text Recognition (STR). In particular, with a single model, it allows for context-free non-autoregressive inference (like CRNN and ViTSTR), context-aware autoregressive inference (like TRBA), and bidirectional iterative refinement (like ABINet). | |
![model image](https://github.com/baudm/parseq/raw/main/.github/system.png) | |
## Intended uses & limitations | |
You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). | |
### How to use | |
*TODO* | |
### BibTeX entry and citation info | |
```bibtex | |
@InProceedings{bautista2022parseq, | |
author={Bautista, Darwin and Atienza, Rowel}, | |
title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, | |
booktitle={Proceedings of the 17th European Conference on Computer Vision (ECCV)}, | |
month={10}, | |
year={2022}, | |
publisher={Springer International Publishing}, | |
address={Cham} | |
} | |
``` | |