bobox's picture
AdaptiveLayerLoss(model=model,
f0c76d4 verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:67190
  - loss:AdaptiveLayerLoss
  - loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
  - stanfordnlp/snli
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: A worker peers out from atop a building under construction.
    sentences:
      - The man pleads for mercy.
      - People and a baby crossing the street.
      - A person is atop of a building.
  - source_sentence: >-
      An aisle at Best Buy with an employee standing at the computer and a Geek
      Squad sign in the background.
    sentences:
      - the man is watching the stars
      - The employee is wearing a blue shirt.
      - A person balancing.
  - source_sentence: >-
      A man with a long white beard is examining a camera and another man with a
      black shirt is in the background.
    sentences:
      - a man is with another man
      - Children in uniforms climb a tower.
      - There are five children.
  - source_sentence: A black dog with a blue collar is jumping into the water.
    sentences:
      - The dog is playing tug of war with a stick.
      - There is a woman painting.
      - A black dog wearing a blue collar is chasing something into the water.
  - source_sentence: A wet child stands in chest deep ocean water.
    sentences:
      - A woman paints a portrait of her best friend.
      - A person in red is cutting the grass on a riding mower
      - The child s playing on the beach.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on microsoft/deberta-v3-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.6583157259281618
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6766541004180908
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7049362860324137
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6017583012580872
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.6115046147241897
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8320677570093458
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6995030811464378
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.6272260790824027
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 163.25054931640625
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.6976381461675579
            name: Dot F1
          - type: dot_f1_threshold
            value: 119.20779418945312
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.5639409221902018
            name: Dot Precision
          - type: dot_recall
            value: 0.914427570093458
            name: Dot Recall
          - type: dot_ap
            value: 0.643747511442345
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.6571083610021129
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 243.75453186035156
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.7055783910745744
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 295.95947265625
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.5900608917697898
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.8773364485981309
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.7072033306346501
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.6590703290069424
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 12.141830444335938
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.7036813518406759
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 14.197540283203125
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.5996708496194199
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.8513434579439252
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.7035256676322055
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.6590703290069424
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 243.75453186035156
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.7055783910745744
            name: Max F1
          - type: max_f1_threshold
            value: 295.95947265625
            name: Max F1 Threshold
          - type: max_precision
            value: 0.6115046147241897
            name: Max Precision
          - type: max_recall
            value: 0.914427570093458
            name: Max Recall
          - type: max_ap
            value: 0.7072033306346501
            name: Max Ap
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.732169941341086
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7344587206087978
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7537099624360986
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7550555196955944
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7468210439584286
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.74849026008206
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6142835401925993
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6100201108417316
            name: Spearman Dot
          - type: pearson_max
            value: 0.7537099624360986
            name: Pearson Max
          - type: spearman_max
            value: 0.7550555196955944
            name: Spearman Max

SentenceTransformer based on microsoft/deberta-v3-small

This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/deberta-v3-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
    'A wet child stands in chest deep ocean water.',
    'The child s playing on the beach.',
    'A woman paints a portrait of her best friend.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.6583
cosine_accuracy_threshold 0.6767
cosine_f1 0.7049
cosine_f1_threshold 0.6018
cosine_precision 0.6115
cosine_recall 0.8321
cosine_ap 0.6995
dot_accuracy 0.6272
dot_accuracy_threshold 163.2505
dot_f1 0.6976
dot_f1_threshold 119.2078
dot_precision 0.5639
dot_recall 0.9144
dot_ap 0.6437
manhattan_accuracy 0.6571
manhattan_accuracy_threshold 243.7545
manhattan_f1 0.7056
manhattan_f1_threshold 295.9595
manhattan_precision 0.5901
manhattan_recall 0.8773
manhattan_ap 0.7072
euclidean_accuracy 0.6591
euclidean_accuracy_threshold 12.1418
euclidean_f1 0.7037
euclidean_f1_threshold 14.1975
euclidean_precision 0.5997
euclidean_recall 0.8513
euclidean_ap 0.7035
max_accuracy 0.6591
max_accuracy_threshold 243.7545
max_f1 0.7056
max_f1_threshold 295.9595
max_precision 0.6115
max_recall 0.9144
max_ap 0.7072

Semantic Similarity

Metric Value
pearson_cosine 0.7322
spearman_cosine 0.7345
pearson_manhattan 0.7537
spearman_manhattan 0.7551
pearson_euclidean 0.7468
spearman_euclidean 0.7485
pearson_dot 0.6143
spearman_dot 0.61
pearson_max 0.7537
spearman_max 0.7551

Training Details

Training Dataset

stanfordnlp/snli

  • Dataset: stanfordnlp/snli at cdb5c3d
  • Size: 67,190 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 21.19 tokens
    • max: 133 tokens
    • min: 4 tokens
    • mean: 11.77 tokens
    • max: 49 tokens
    • 0: 100.00%
  • Samples:
    sentence1 sentence2 label
    Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving. It is necessary to use a controlled method to ensure the treatments are worthwhile. 0
    It was conducted in silence. It was done silently. 0
    oh Lewisville any decent food in your cafeteria up there Is there any decent food in your cafeteria up there in Lewisville? 0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1,
        "prior_layers_weight": 1,
        "kl_div_weight": 1,
        "kl_temperature": 1
    }
    

Evaluation Dataset

stanfordnlp/snli

  • Dataset: stanfordnlp/snli at cdb5c3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 14.77 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 14.74 tokens
    • max: 49 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1,
        "prior_layers_weight": 1,
        "kl_div_weight": 1,
        "kl_temperature": 1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 42
  • per_device_eval_batch_size: 22
  • learning_rate: 3e-06
  • weight_decay: 1e-08
  • num_train_epochs: 2
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.5
  • save_safetensors: False
  • fp16: True
  • hub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmp
  • hub_strategy: checkpoint
  • hub_private_repo: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 42
  • per_device_eval_batch_size: 22
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 3e-06
  • weight_decay: 1e-08
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.5
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmp
  • hub_strategy: checkpoint
  • hub_private_repo: True
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss max_ap spearman_cosine
0.1 160 4.6003 4.8299 0.6017 -
0.2 320 4.0659 4.3436 0.6168 -
0.3 480 3.4886 4.0840 0.6339 -
0.4 640 3.0592 3.6422 0.6611 -
0.5 800 2.5728 3.1927 0.6773 -
0.6 960 2.184 2.8322 0.6893 -
0.7 1120 1.8744 2.4892 0.6954 -
0.8 1280 1.757 2.4453 0.7002 -
0.9 1440 1.5872 2.2565 0.7010 -
1.0 1600 1.446 2.1391 0.7046 -
1.1 1760 1.3892 2.1236 0.7058 -
1.2 1920 1.2567 1.9738 0.7053 -
1.3 2080 1.2233 1.8925 0.7063 -
1.4 2240 1.1954 1.8392 0.7075 -
1.5 2400 1.1395 1.9081 0.7065 -
1.6 2560 1.1211 1.8080 0.7074 -
1.7 2720 1.0825 1.8408 0.7073 -
1.8 2880 1.1358 1.7363 0.7073 -
1.9 3040 1.0628 1.8936 0.7072 -
2.0 3200 1.1412 1.7846 0.7072 -
None 0 - 3.0121 0.7072 0.7345

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AdaptiveLayerLoss

@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings}, 
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}