metadata
tags:
- multimodal
- mistral
- pixtral
Downloaded from the magnet link:
magnet:?xt=urn:btih:7278e625de2b1da598b23954c13933047126238a&dn=pixtral-12b-240910&tr=udp%3A%2F%http://2Ftracker.opentrackr.org%3A1337%2Fannounce&tr=udp%3A%2F%http://2Fopen.demonii.com%3A1337%2Fannounce&tr=http%3A%2F%http://2Ftracker.ipv6tracker.org%3A80%2Fannounce
Published by MistralAI in twitter/X: https://x.com/MistralAI/status/1833758285167722836
Release information:
https://github.com/mistralai/mistral-common/releases/tag/v1.4.0
Pixtral is out!
Mistral common has image support! You can now pass images and URLs alongside text into the user message.
pip install --upgrade mistral_common
Images
You can encode images as follows
from mistral_common.protocol.instruct.messages import (
UserMessage,
TextChunk,
ImageURLChunk,
ImageChunk,
)
from PIL import Image
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
tokenizer = MistralTokenizer.from_model("pixtral")
image = Image.new('RGB', (64, 64))
# tokenize images and text
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="Describe this image"),
ImageChunk(image=image),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))
Image URLs
You can pass image url which will be automatically downloaded
url_dog = "https://picsum.photos/id/237/200/300"
url_mountain = "https://picsum.photos/seed/picsum/200/300"
# tokenize image urls and text
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="Can this animal"),
ImageURLChunk(image_url=url_dog),
TextChunk(text="live here?"),
ImageURLChunk(image_url=url_mountain),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))
ImageData
You can also pass image encoded as base64
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="What is this?"),
ImageURLChunk(image_url=""),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))