metadata
language:
- en
license: apache-2.0
datasets:
- Open-Orca/SlimOrca
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-11b-slimorca
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.25
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.66
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.66
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.98
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
name: Open LLM Leaderboard
Full weight fine tuned on two epochs of SlimOrca. Uses Mistral Instruct's prompt format.
The base model for this came from a variation on Undi's Mistral 11B recipe. The o_proj
and down_proj
tensors were set to zero in the added layers, making the output exactly identical to Mistral 7B before training.
Benchmarks look good locally but still evaluating actual usefulness.
Update: this turned out great! 10/10 would recommend as a training approach.
Reproducing
This mergekit config was used to produce the base model:
slices:
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [0, 24]
- sources: # add middle layers with residuals scaled to zero
- model: mistralai/Mistral-7B-v0.1
layer_range: [8, 24]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [24, 32]
merge_method: passthrough
dtype: bfloat16
The axolotl config for fine tuning is available here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.12 |
AI2 Reasoning Challenge (25-Shot) | 64.25 |
HellaSwag (10-Shot) | 83.81 |
MMLU (5-Shot) | 63.66 |
TruthfulQA (0-shot) | 54.66 |
Winogrande (5-shot) | 77.98 |
GSM8k (5-shot) | 52.39 |