metadata
license: cc-by-nc-4.0
model-index:
- name: Mixtral_11Bx2_MoE_19B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.16
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.47
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.31
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 72
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.28
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_11Bx2_MoE_19B
name: Open LLM Leaderboard
Mixtral MOE 2x10.7B
One of Best MoE Model reviewd by reddit community
MoE of the following models :
Local Test
hf (pretrained=cloudyu/Mixtral_11Bx2_MoE_19B), gen_kwargs: (None), limit: None, num_fewshot: 10, batch_size: auto (32)
Tasks Version Filter n-shot Metric Value Stderr hellaswag Yaml none 10 acc 0.7142 ± 0.0045 none 10 acc_norm 0.8819 ± 0.0032
gpu code example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
CPU example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.41 |
AI2 Reasoning Challenge (25-Shot) | 71.16 |
HellaSwag (10-Shot) | 88.47 |
MMLU (5-Shot) | 66.31 |
TruthfulQA (0-shot) | 72.00 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 65.28 |