Edit model card

This is a small Russian denoising autoencoder. It can be used for restoring corrupted sentences.

This model was produced by fine-tuning the rut5-small model on the task of reconstructing a sentence:

  • restoring word positions (after slightly shuffling them)
  • restoring dropped words and punctuation marks (after dropping some of them randomly)
  • restoring inflection of words (after changing their inflection randomly using natasha and pymorphy2 packages)

The fine-tuning was performed on a Leipzig web corpus of Russian sentences.

The model can be applied as follows:

# !pip install transformers sentencepiece
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
tokenizer = T5Tokenizer.from_pretrained("cointegrated/rut5-small-normalizer")
model = T5ForConditionalGeneration.from_pretrained("cointegrated/rut5-small-normalizer")

text = 'меня тобой не понимать'
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
    hypotheses = model.generate(
        **inputs, 
        do_sample=True, top_p=0.95, 
        num_return_sequences=5, 
        repetition_penalty=2.5,
        max_length=32,
    )
for h in hypotheses:
    print(tokenizer.decode(h, skip_special_tokens=True))

A possible output is:

# Мне тебя не понимать.
# Если бы ты понимаешь меня?
# Я с тобой не понимаю.
# Я тебя не понимаю.
# Я не понимаю о чем ты.
Downloads last month
24
Safetensors
Model size
64.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.