|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
model-index: |
|
- name: SFR-Embedding-Mistral |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 77.92537313432834 |
|
- type: ap |
|
value: 40.86767661556651 |
|
- type: f1 |
|
value: 71.65758897929837 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 95.967 |
|
- type: ap |
|
value: 94.46300829592593 |
|
- type: f1 |
|
value: 95.96507173189292 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 54.352000000000004 |
|
- type: f1 |
|
value: 53.636682615380174 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 43.314 |
|
- type: ndcg_at_2 |
|
value: 54.757 |
|
- type: ndcg_at_3 |
|
value: 58.84700000000001 |
|
- type: ndcg_at_5 |
|
value: 63.634 |
|
- type: ndcg_at_7 |
|
value: 65.741 |
|
- type: ndcg_at_10 |
|
value: 67.171 |
|
- type: ndcg_at_20 |
|
value: 68.585 |
|
- type: ndcg_at_30 |
|
value: 68.81 |
|
- type: ndcg_at_50 |
|
value: 68.932 |
|
- type: ndcg_at_70 |
|
value: 68.992 |
|
- type: ndcg_at_100 |
|
value: 69.014 |
|
- type: ndcg_at_200 |
|
value: 69.014 |
|
- type: ndcg_at_300 |
|
value: 69.014 |
|
- type: ndcg_at_500 |
|
value: 69.014 |
|
- type: ndcg_at_700 |
|
value: 69.014 |
|
- type: ndcg_at_1000 |
|
value: 69.014 |
|
- type: map_at_1 |
|
value: 43.314 |
|
- type: map_at_2 |
|
value: 52.383 |
|
- type: map_at_3 |
|
value: 55.108999999999995 |
|
- type: map_at_5 |
|
value: 57.772999999999996 |
|
- type: map_at_7 |
|
value: 58.718 |
|
- type: map_at_10 |
|
value: 59.256 |
|
- type: map_at_20 |
|
value: 59.668 |
|
- type: map_at_30 |
|
value: 59.709999999999994 |
|
- type: map_at_50 |
|
value: 59.727 |
|
- type: map_at_70 |
|
value: 59.733999999999995 |
|
- type: map_at_100 |
|
value: 59.73500000000001 |
|
- type: map_at_200 |
|
value: 59.73500000000001 |
|
- type: map_at_300 |
|
value: 59.73500000000001 |
|
- type: map_at_500 |
|
value: 59.73500000000001 |
|
- type: map_at_700 |
|
value: 59.73500000000001 |
|
- type: map_at_1000 |
|
value: 59.73500000000001 |
|
- type: recall_at_1 |
|
value: 43.314 |
|
- type: recall_at_2 |
|
value: 61.451 |
|
- type: recall_at_3 |
|
value: 69.63000000000001 |
|
- type: recall_at_5 |
|
value: 81.223 |
|
- type: recall_at_7 |
|
value: 87.33999999999999 |
|
- type: recall_at_10 |
|
value: 92.034 |
|
- type: recall_at_20 |
|
value: 97.44 |
|
- type: recall_at_30 |
|
value: 98.506 |
|
- type: recall_at_50 |
|
value: 99.14699999999999 |
|
- type: recall_at_70 |
|
value: 99.502 |
|
- type: recall_at_100 |
|
value: 99.644 |
|
- type: recall_at_200 |
|
value: 99.644 |
|
- type: recall_at_300 |
|
value: 99.644 |
|
- type: recall_at_500 |
|
value: 99.644 |
|
- type: recall_at_700 |
|
value: 99.644 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: precision_at_1 |
|
value: 43.314 |
|
- type: precision_at_2 |
|
value: 30.725 |
|
- type: precision_at_3 |
|
value: 23.21 |
|
- type: precision_at_5 |
|
value: 16.245 |
|
- type: precision_at_7 |
|
value: 12.477 |
|
- type: precision_at_10 |
|
value: 9.203 |
|
- type: precision_at_20 |
|
value: 4.872 |
|
- type: precision_at_30 |
|
value: 3.2840000000000003 |
|
- type: precision_at_50 |
|
value: 1.983 |
|
- type: precision_at_70 |
|
value: 1.421 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_200 |
|
value: 0.498 |
|
- type: precision_at_300 |
|
value: 0.332 |
|
- type: precision_at_500 |
|
value: 0.199 |
|
- type: precision_at_700 |
|
value: 0.14200000000000002 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: mrr_at_1 |
|
value: 44.666 |
|
- type: mrr_at_2 |
|
value: 52.418 |
|
- type: mrr_at_3 |
|
value: 55.595000000000006 |
|
- type: mrr_at_5 |
|
value: 58.205 |
|
- type: mrr_at_7 |
|
value: 59.202999999999996 |
|
- type: mrr_at_10 |
|
value: 59.727 |
|
- type: mrr_at_20 |
|
value: 60.133 |
|
- type: mrr_at_30 |
|
value: 60.178 |
|
- type: mrr_at_50 |
|
value: 60.192 |
|
- type: mrr_at_70 |
|
value: 60.19799999999999 |
|
- type: mrr_at_100 |
|
value: 60.199999999999996 |
|
- type: mrr_at_200 |
|
value: 60.199999999999996 |
|
- type: mrr_at_300 |
|
value: 60.199999999999996 |
|
- type: mrr_at_500 |
|
value: 60.199999999999996 |
|
- type: mrr_at_700 |
|
value: 60.199999999999996 |
|
- type: mrr_at_1000 |
|
value: 60.199999999999996 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 52.07508593014336 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 47.381339333240675 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 67.58376647859171 |
|
- type: mrr |
|
value: 80.56885635140483 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.40107280274783 |
|
- type: cos_sim_spearman |
|
value: 86.07003345325681 |
|
- type: euclidean_pearson |
|
value: 87.1726034325395 |
|
- type: euclidean_spearman |
|
value: 86.07003345325681 |
|
- type: manhattan_pearson |
|
value: 87.25660625029772 |
|
- type: manhattan_spearman |
|
value: 86.3808839096893 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 88.81168831168831 |
|
- type: f1 |
|
value: 88.76514496560141 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 43.9382520874344 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 41.14351847240913 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 34.51166666666667 |
|
- type: ndcg_at_2 |
|
value: 38.51591666666667 |
|
- type: ndcg_at_3 |
|
value: 40.95083333333333 |
|
- type: ndcg_at_5 |
|
value: 43.580666666666666 |
|
- type: ndcg_at_7 |
|
value: 45.0625 |
|
- type: ndcg_at_10 |
|
value: 46.49083333333333 |
|
- type: ndcg_at_20 |
|
value: 48.731333333333325 |
|
- type: ndcg_at_30 |
|
value: 49.78666666666667 |
|
- type: ndcg_at_50 |
|
value: 50.84049999999999 |
|
- type: ndcg_at_70 |
|
value: 51.393750000000004 |
|
- type: ndcg_at_100 |
|
value: 51.883333333333326 |
|
- type: ndcg_at_200 |
|
value: 52.65225 |
|
- type: ndcg_at_300 |
|
value: 52.98241666666669 |
|
- type: ndcg_at_500 |
|
value: 53.28541666666668 |
|
- type: ndcg_at_700 |
|
value: 53.49241666666668 |
|
- type: ndcg_at_1000 |
|
value: 53.63758333333334 |
|
- type: map_at_1 |
|
value: 29.10075 |
|
- type: map_at_2 |
|
value: 34.636500000000005 |
|
- type: map_at_3 |
|
value: 36.92033333333333 |
|
- type: map_at_5 |
|
value: 38.81641666666666 |
|
- type: map_at_7 |
|
value: 39.635416666666664 |
|
- type: map_at_10 |
|
value: 40.294583333333335 |
|
- type: map_at_20 |
|
value: 41.07574999999999 |
|
- type: map_at_30 |
|
value: 41.333 |
|
- type: map_at_50 |
|
value: 41.529333333333334 |
|
- type: map_at_70 |
|
value: 41.606833333333334 |
|
- type: map_at_100 |
|
value: 41.66224999999999 |
|
- type: map_at_200 |
|
value: 41.72691666666666 |
|
- type: map_at_300 |
|
value: 41.746583333333334 |
|
- type: map_at_500 |
|
value: 41.75983333333333 |
|
- type: map_at_700 |
|
value: 41.76558333333333 |
|
- type: map_at_1000 |
|
value: 41.769000000000005 |
|
- type: recall_at_1 |
|
value: 29.10075 |
|
- type: recall_at_2 |
|
value: 39.07658333333333 |
|
- type: recall_at_3 |
|
value: 44.93591666666667 |
|
- type: recall_at_5 |
|
value: 51.66883333333333 |
|
- type: recall_at_7 |
|
value: 55.881000000000014 |
|
- type: recall_at_10 |
|
value: 60.34691666666667 |
|
- type: recall_at_20 |
|
value: 68.44016666666667 |
|
- type: recall_at_30 |
|
value: 72.90766666666667 |
|
- type: recall_at_50 |
|
value: 77.843 |
|
- type: recall_at_70 |
|
value: 80.70366666666668 |
|
- type: recall_at_100 |
|
value: 83.42866666666667 |
|
- type: recall_at_200 |
|
value: 88.06816666666668 |
|
- type: recall_at_300 |
|
value: 90.249 |
|
- type: recall_at_500 |
|
value: 92.37616666666668 |
|
- type: recall_at_700 |
|
value: 93.978 |
|
- type: recall_at_1000 |
|
value: 95.12791666666666 |
|
- type: precision_at_1 |
|
value: 34.51166666666667 |
|
- type: precision_at_2 |
|
value: 24.326333333333327 |
|
- type: precision_at_3 |
|
value: 19.099249999999998 |
|
- type: precision_at_5 |
|
value: 13.672666666666666 |
|
- type: precision_at_7 |
|
value: 10.772 |
|
- type: precision_at_10 |
|
value: 8.302166666666668 |
|
- type: precision_at_20 |
|
value: 4.8960833333333325 |
|
- type: precision_at_30 |
|
value: 3.551083333333333 |
|
- type: precision_at_50 |
|
value: 2.3386666666666662 |
|
- type: precision_at_70 |
|
value: 1.7605833333333334 |
|
- type: precision_at_100 |
|
value: 1.2965 |
|
- type: precision_at_200 |
|
value: 0.7106666666666668 |
|
- type: precision_at_300 |
|
value: 0.4955 |
|
- type: precision_at_500 |
|
value: 0.3106666666666667 |
|
- type: precision_at_700 |
|
value: 0.22791666666666668 |
|
- type: precision_at_1000 |
|
value: 0.1635833333333333 |
|
- type: mrr_at_1 |
|
value: 34.51166666666667 |
|
- type: mrr_at_2 |
|
value: 39.954249999999995 |
|
- type: mrr_at_3 |
|
value: 41.93741666666668 |
|
- type: mrr_at_5 |
|
value: 43.487166666666674 |
|
- type: mrr_at_7 |
|
value: 44.14983333333333 |
|
- type: mrr_at_10 |
|
value: 44.62766666666666 |
|
- type: mrr_at_20 |
|
value: 45.15291666666668 |
|
- type: mrr_at_30 |
|
value: 45.317 |
|
- type: mrr_at_50 |
|
value: 45.42875 |
|
- type: mrr_at_70 |
|
value: 45.46966666666667 |
|
- type: mrr_at_100 |
|
value: 45.49716666666667 |
|
- type: mrr_at_200 |
|
value: 45.525166666666664 |
|
- type: mrr_at_300 |
|
value: 45.53233333333335 |
|
- type: mrr_at_500 |
|
value: 45.5365 |
|
- type: mrr_at_700 |
|
value: 45.538583333333335 |
|
- type: mrr_at_1000 |
|
value: 45.539583333333326 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 35.179 |
|
- type: ndcg_at_2 |
|
value: 31.243 |
|
- type: ndcg_at_3 |
|
value: 30.562 |
|
- type: ndcg_at_5 |
|
value: 32.409 |
|
- type: ndcg_at_7 |
|
value: 34.525 |
|
- type: ndcg_at_10 |
|
value: 36.415 |
|
- type: ndcg_at_20 |
|
value: 39.443 |
|
- type: ndcg_at_30 |
|
value: 40.796 |
|
- type: ndcg_at_50 |
|
value: 42.16 |
|
- type: ndcg_at_70 |
|
value: 42.971 |
|
- type: ndcg_at_100 |
|
value: 43.691 |
|
- type: ndcg_at_200 |
|
value: 45.004 |
|
- type: ndcg_at_300 |
|
value: 45.527 |
|
- type: ndcg_at_500 |
|
value: 46.072 |
|
- type: ndcg_at_700 |
|
value: 46.387 |
|
- type: ndcg_at_1000 |
|
value: 46.663 |
|
- type: map_at_1 |
|
value: 15.692 |
|
- type: map_at_2 |
|
value: 20.116 |
|
- type: map_at_3 |
|
value: 22.6 |
|
- type: map_at_5 |
|
value: 24.701 |
|
- type: map_at_7 |
|
value: 25.934 |
|
- type: map_at_10 |
|
value: 26.843 |
|
- type: map_at_20 |
|
value: 27.975 |
|
- type: map_at_30 |
|
value: 28.372000000000003 |
|
- type: map_at_50 |
|
value: 28.671000000000003 |
|
- type: map_at_70 |
|
value: 28.803 |
|
- type: map_at_100 |
|
value: 28.895 |
|
- type: map_at_200 |
|
value: 29.011 |
|
- type: map_at_300 |
|
value: 29.042 |
|
- type: map_at_500 |
|
value: 29.065 |
|
- type: map_at_700 |
|
value: 29.075 |
|
- type: map_at_1000 |
|
value: 29.081000000000003 |
|
- type: recall_at_1 |
|
value: 15.692 |
|
- type: recall_at_2 |
|
value: 22.602 |
|
- type: recall_at_3 |
|
value: 27.814 |
|
- type: recall_at_5 |
|
value: 33.756 |
|
- type: recall_at_7 |
|
value: 38.073 |
|
- type: recall_at_10 |
|
value: 42.553000000000004 |
|
- type: recall_at_20 |
|
value: 51.121 |
|
- type: recall_at_30 |
|
value: 55.523999999999994 |
|
- type: recall_at_50 |
|
value: 60.586 |
|
- type: recall_at_70 |
|
value: 63.94 |
|
- type: recall_at_100 |
|
value: 67.134 |
|
- type: recall_at_200 |
|
value: 73.543 |
|
- type: recall_at_300 |
|
value: 76.372 |
|
- type: recall_at_500 |
|
value: 79.60199999999999 |
|
- type: recall_at_700 |
|
value: 81.536 |
|
- type: recall_at_1000 |
|
value: 83.37400000000001 |
|
- type: precision_at_1 |
|
value: 35.179 |
|
- type: precision_at_2 |
|
value: 27.199 |
|
- type: precision_at_3 |
|
value: 22.953000000000003 |
|
- type: precision_at_5 |
|
value: 17.224999999999998 |
|
- type: precision_at_7 |
|
value: 14.238999999999999 |
|
- type: precision_at_10 |
|
value: 11.303 |
|
- type: precision_at_20 |
|
value: 6.954000000000001 |
|
- type: precision_at_30 |
|
value: 5.116 |
|
- type: precision_at_50 |
|
value: 3.395 |
|
- type: precision_at_70 |
|
value: 2.579 |
|
- type: precision_at_100 |
|
value: 1.9109999999999998 |
|
- type: precision_at_200 |
|
value: 1.065 |
|
- type: precision_at_300 |
|
value: 0.743 |
|
- type: precision_at_500 |
|
value: 0.46699999999999997 |
|
- type: precision_at_700 |
|
value: 0.344 |
|
- type: precision_at_1000 |
|
value: 0.247 |
|
- type: mrr_at_1 |
|
value: 35.179 |
|
- type: mrr_at_2 |
|
value: 41.792 |
|
- type: mrr_at_3 |
|
value: 44.484 |
|
- type: mrr_at_5 |
|
value: 46.39 |
|
- type: mrr_at_7 |
|
value: 47.125 |
|
- type: mrr_at_10 |
|
value: 47.711999999999996 |
|
- type: mrr_at_20 |
|
value: 48.214 |
|
- type: mrr_at_30 |
|
value: 48.325 |
|
- type: mrr_at_50 |
|
value: 48.392 |
|
- type: mrr_at_70 |
|
value: 48.418 |
|
- type: mrr_at_100 |
|
value: 48.44 |
|
- type: mrr_at_200 |
|
value: 48.46 |
|
- type: mrr_at_300 |
|
value: 48.461999999999996 |
|
- type: mrr_at_500 |
|
value: 48.466 |
|
- type: mrr_at_700 |
|
value: 48.466 |
|
- type: mrr_at_1000 |
|
value: 48.467 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 62.375 |
|
- type: ndcg_at_2 |
|
value: 56.286 |
|
- type: ndcg_at_3 |
|
value: 53.665 |
|
- type: ndcg_at_5 |
|
value: 51.139 |
|
- type: ndcg_at_7 |
|
value: 49.873 |
|
- type: ndcg_at_10 |
|
value: 49.056 |
|
- type: ndcg_at_20 |
|
value: 48.783 |
|
- type: ndcg_at_30 |
|
value: 49.166 |
|
- type: ndcg_at_50 |
|
value: 51.141999999999996 |
|
- type: ndcg_at_70 |
|
value: 52.774 |
|
- type: ndcg_at_100 |
|
value: 54.403 |
|
- type: ndcg_at_200 |
|
value: 57.419 |
|
- type: ndcg_at_300 |
|
value: 58.778 |
|
- type: ndcg_at_500 |
|
value: 60.228 |
|
- type: ndcg_at_700 |
|
value: 61.07599999999999 |
|
- type: ndcg_at_1000 |
|
value: 61.846000000000004 |
|
- type: map_at_1 |
|
value: 10.359 |
|
- type: map_at_2 |
|
value: 14.446 |
|
- type: map_at_3 |
|
value: 16.689 |
|
- type: map_at_5 |
|
value: 20.096 |
|
- type: map_at_7 |
|
value: 22.247 |
|
- type: map_at_10 |
|
value: 24.468999999999998 |
|
- type: map_at_20 |
|
value: 28.938000000000002 |
|
- type: map_at_30 |
|
value: 31.134 |
|
- type: map_at_50 |
|
value: 33.403 |
|
- type: map_at_70 |
|
value: 34.486 |
|
- type: map_at_100 |
|
value: 35.337 |
|
- type: map_at_200 |
|
value: 36.364999999999995 |
|
- type: map_at_300 |
|
value: 36.735 |
|
- type: map_at_500 |
|
value: 37.057 |
|
- type: map_at_700 |
|
value: 37.225 |
|
- type: map_at_1000 |
|
value: 37.379 |
|
- type: recall_at_1 |
|
value: 10.359 |
|
- type: recall_at_2 |
|
value: 14.945 |
|
- type: recall_at_3 |
|
value: 17.694 |
|
- type: recall_at_5 |
|
value: 22.677 |
|
- type: recall_at_7 |
|
value: 26.131 |
|
- type: recall_at_10 |
|
value: 30.053 |
|
- type: recall_at_20 |
|
value: 39.518 |
|
- type: recall_at_30 |
|
value: 44.925 |
|
- type: recall_at_50 |
|
value: 52.154 |
|
- type: recall_at_70 |
|
value: 56.729 |
|
- type: recall_at_100 |
|
value: 61.18900000000001 |
|
- type: recall_at_200 |
|
value: 70.407 |
|
- type: recall_at_300 |
|
value: 74.412 |
|
- type: recall_at_500 |
|
value: 78.891 |
|
- type: recall_at_700 |
|
value: 81.74 |
|
- type: recall_at_1000 |
|
value: 84.253 |
|
- type: precision_at_1 |
|
value: 75 |
|
- type: precision_at_2 |
|
value: 64.125 |
|
- type: precision_at_3 |
|
value: 57.833 |
|
- type: precision_at_5 |
|
value: 50.24999999999999 |
|
- type: precision_at_7 |
|
value: 44.75 |
|
- type: precision_at_10 |
|
value: 39.75 |
|
- type: precision_at_20 |
|
value: 30.412 |
|
- type: precision_at_30 |
|
value: 25.141999999999996 |
|
- type: precision_at_50 |
|
value: 19.2 |
|
- type: precision_at_70 |
|
value: 15.729000000000001 |
|
- type: precision_at_100 |
|
value: 12.552 |
|
- type: precision_at_200 |
|
value: 7.866 |
|
- type: precision_at_300 |
|
value: 5.9270000000000005 |
|
- type: precision_at_500 |
|
value: 4.1129999999999995 |
|
- type: precision_at_700 |
|
value: 3.2460000000000004 |
|
- type: precision_at_1000 |
|
value: 2.5260000000000002 |
|
- type: mrr_at_1 |
|
value: 75 |
|
- type: mrr_at_2 |
|
value: 78.625 |
|
- type: mrr_at_3 |
|
value: 79.708 |
|
- type: mrr_at_5 |
|
value: 80.446 |
|
- type: mrr_at_7 |
|
value: 80.862 |
|
- type: mrr_at_10 |
|
value: 81.161 |
|
- type: mrr_at_20 |
|
value: 81.3 |
|
- type: mrr_at_30 |
|
value: 81.348 |
|
- type: mrr_at_50 |
|
value: 81.361 |
|
- type: mrr_at_70 |
|
value: 81.361 |
|
- type: mrr_at_100 |
|
value: 81.361 |
|
- type: mrr_at_200 |
|
value: 81.367 |
|
- type: mrr_at_300 |
|
value: 81.367 |
|
- type: mrr_at_500 |
|
value: 81.368 |
|
- type: mrr_at_700 |
|
value: 81.368 |
|
- type: mrr_at_1000 |
|
value: 81.368 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 50.239999999999995 |
|
- type: f1 |
|
value: 46.42361822342044 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 83.723 |
|
- type: ndcg_at_2 |
|
value: 86.777 |
|
- type: ndcg_at_3 |
|
value: 87.997 |
|
- type: ndcg_at_5 |
|
value: 88.864 |
|
- type: ndcg_at_7 |
|
value: 89.143 |
|
- type: ndcg_at_10 |
|
value: 89.349 |
|
- type: ndcg_at_20 |
|
value: 89.709 |
|
- type: ndcg_at_30 |
|
value: 89.82900000000001 |
|
- type: ndcg_at_50 |
|
value: 89.923 |
|
- type: ndcg_at_70 |
|
value: 89.982 |
|
- type: ndcg_at_100 |
|
value: 90.026 |
|
- type: ndcg_at_200 |
|
value: 90.10000000000001 |
|
- type: ndcg_at_300 |
|
value: 90.12599999999999 |
|
- type: ndcg_at_500 |
|
value: 90.17399999999999 |
|
- type: ndcg_at_700 |
|
value: 90.19 |
|
- type: ndcg_at_1000 |
|
value: 90.208 |
|
- type: map_at_1 |
|
value: 77.64999999999999 |
|
- type: map_at_2 |
|
value: 83.769 |
|
- type: map_at_3 |
|
value: 85.041 |
|
- type: map_at_5 |
|
value: 85.736 |
|
- type: map_at_7 |
|
value: 85.924 |
|
- type: map_at_10 |
|
value: 86.032 |
|
- type: map_at_20 |
|
value: 86.177 |
|
- type: map_at_30 |
|
value: 86.213 |
|
- type: map_at_50 |
|
value: 86.233 |
|
- type: map_at_70 |
|
value: 86.24300000000001 |
|
- type: map_at_100 |
|
value: 86.249 |
|
- type: map_at_200 |
|
value: 86.256 |
|
- type: map_at_300 |
|
value: 86.258 |
|
- type: map_at_500 |
|
value: 86.26 |
|
- type: map_at_700 |
|
value: 86.26 |
|
- type: map_at_1000 |
|
value: 86.261 |
|
- type: recall_at_1 |
|
value: 77.64999999999999 |
|
- type: recall_at_2 |
|
value: 88.53999999999999 |
|
- type: recall_at_3 |
|
value: 91.696 |
|
- type: recall_at_5 |
|
value: 93.916 |
|
- type: recall_at_7 |
|
value: 94.731 |
|
- type: recall_at_10 |
|
value: 95.318 |
|
- type: recall_at_20 |
|
value: 96.507 |
|
- type: recall_at_30 |
|
value: 96.956 |
|
- type: recall_at_50 |
|
value: 97.34899999999999 |
|
- type: recall_at_70 |
|
value: 97.61 |
|
- type: recall_at_100 |
|
value: 97.83 |
|
- type: recall_at_200 |
|
value: 98.223 |
|
- type: recall_at_300 |
|
value: 98.374 |
|
- type: recall_at_500 |
|
value: 98.67899999999999 |
|
- type: recall_at_700 |
|
value: 98.787 |
|
- type: recall_at_1000 |
|
value: 98.919 |
|
- type: precision_at_1 |
|
value: 83.723 |
|
- type: precision_at_2 |
|
value: 48.425000000000004 |
|
- type: precision_at_3 |
|
value: 33.638 |
|
- type: precision_at_5 |
|
value: 20.843 |
|
- type: precision_at_7 |
|
value: 15.079 |
|
- type: precision_at_10 |
|
value: 10.674999999999999 |
|
- type: precision_at_20 |
|
value: 5.457999999999999 |
|
- type: precision_at_30 |
|
value: 3.6740000000000004 |
|
- type: precision_at_50 |
|
value: 2.2239999999999998 |
|
- type: precision_at_70 |
|
value: 1.599 |
|
- type: precision_at_100 |
|
value: 1.125 |
|
- type: precision_at_200 |
|
value: 0.5680000000000001 |
|
- type: precision_at_300 |
|
value: 0.38 |
|
- type: precision_at_500 |
|
value: 0.22999999999999998 |
|
- type: precision_at_700 |
|
value: 0.165 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: mrr_at_1 |
|
value: 83.723 |
|
- type: mrr_at_2 |
|
value: 88.794 |
|
- type: mrr_at_3 |
|
value: 89.679 |
|
- type: mrr_at_5 |
|
value: 90.049 |
|
- type: mrr_at_7 |
|
value: 90.129 |
|
- type: mrr_at_10 |
|
value: 90.167 |
|
- type: mrr_at_20 |
|
value: 90.208 |
|
- type: mrr_at_30 |
|
value: 90.214 |
|
- type: mrr_at_50 |
|
value: 90.217 |
|
- type: mrr_at_70 |
|
value: 90.218 |
|
- type: mrr_at_100 |
|
value: 90.21900000000001 |
|
- type: mrr_at_200 |
|
value: 90.21900000000001 |
|
- type: mrr_at_300 |
|
value: 90.21900000000001 |
|
- type: mrr_at_500 |
|
value: 90.21900000000001 |
|
- type: mrr_at_700 |
|
value: 90.21900000000001 |
|
- type: mrr_at_1000 |
|
value: 90.21900000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 59.721999999999994 |
|
- type: ndcg_at_2 |
|
value: 56.85 |
|
- type: ndcg_at_3 |
|
value: 56.462999999999994 |
|
- type: ndcg_at_5 |
|
value: 57.75599999999999 |
|
- type: ndcg_at_7 |
|
value: 59.109 |
|
- type: ndcg_at_10 |
|
value: 60.402 |
|
- type: ndcg_at_20 |
|
value: 63.071999999999996 |
|
- type: ndcg_at_30 |
|
value: 64.302 |
|
- type: ndcg_at_50 |
|
value: 65.619 |
|
- type: ndcg_at_70 |
|
value: 66.161 |
|
- type: ndcg_at_100 |
|
value: 66.645 |
|
- type: ndcg_at_200 |
|
value: 67.353 |
|
- type: ndcg_at_300 |
|
value: 67.646 |
|
- type: ndcg_at_500 |
|
value: 67.852 |
|
- type: ndcg_at_700 |
|
value: 67.974 |
|
- type: ndcg_at_1000 |
|
value: 68.084 |
|
- type: map_at_1 |
|
value: 31.56 |
|
- type: map_at_2 |
|
value: 42.093 |
|
- type: map_at_3 |
|
value: 46.177 |
|
- type: map_at_5 |
|
value: 49.78 |
|
- type: map_at_7 |
|
value: 51.410999999999994 |
|
- type: map_at_10 |
|
value: 52.524 |
|
- type: map_at_20 |
|
value: 53.815000000000005 |
|
- type: map_at_30 |
|
value: 54.201 |
|
- type: map_at_50 |
|
value: 54.531 |
|
- type: map_at_70 |
|
value: 54.625 |
|
- type: map_at_100 |
|
value: 54.686 |
|
- type: map_at_200 |
|
value: 54.757999999999996 |
|
- type: map_at_300 |
|
value: 54.776 |
|
- type: map_at_500 |
|
value: 54.786 |
|
- type: map_at_700 |
|
value: 54.790000000000006 |
|
- type: map_at_1000 |
|
value: 54.793000000000006 |
|
- type: recall_at_1 |
|
value: 31.56 |
|
- type: recall_at_2 |
|
value: 44.858 |
|
- type: recall_at_3 |
|
value: 51.11 |
|
- type: recall_at_5 |
|
value: 58.394 |
|
- type: recall_at_7 |
|
value: 63.001 |
|
- type: recall_at_10 |
|
value: 66.81200000000001 |
|
- type: recall_at_20 |
|
value: 74.901 |
|
- type: recall_at_30 |
|
value: 79.218 |
|
- type: recall_at_50 |
|
value: 84.49 |
|
- type: recall_at_70 |
|
value: 87.003 |
|
- type: recall_at_100 |
|
value: 89.345 |
|
- type: recall_at_200 |
|
value: 93.173 |
|
- type: recall_at_300 |
|
value: 94.906 |
|
- type: recall_at_500 |
|
value: 96.223 |
|
- type: recall_at_700 |
|
value: 97.043 |
|
- type: recall_at_1000 |
|
value: 97.785 |
|
- type: precision_at_1 |
|
value: 59.721999999999994 |
|
- type: precision_at_2 |
|
value: 46.682 |
|
- type: precision_at_3 |
|
value: 37.602999999999994 |
|
- type: precision_at_5 |
|
value: 27.500000000000004 |
|
- type: precision_at_7 |
|
value: 21.847 |
|
- type: precision_at_10 |
|
value: 16.667 |
|
- type: precision_at_20 |
|
value: 9.545 |
|
- type: precision_at_30 |
|
value: 6.795 |
|
- type: precision_at_50 |
|
value: 4.38 |
|
- type: precision_at_70 |
|
value: 3.221 |
|
- type: precision_at_100 |
|
value: 2.319 |
|
- type: precision_at_200 |
|
value: 1.2149999999999999 |
|
- type: precision_at_300 |
|
value: 0.827 |
|
- type: precision_at_500 |
|
value: 0.504 |
|
- type: precision_at_700 |
|
value: 0.364 |
|
- type: precision_at_1000 |
|
value: 0.257 |
|
- type: mrr_at_1 |
|
value: 59.721999999999994 |
|
- type: mrr_at_2 |
|
value: 64.506 |
|
- type: mrr_at_3 |
|
value: 65.792 |
|
- type: mrr_at_5 |
|
value: 66.965 |
|
- type: mrr_at_7 |
|
value: 67.34700000000001 |
|
- type: mrr_at_10 |
|
value: 67.57 |
|
- type: mrr_at_20 |
|
value: 67.896 |
|
- type: mrr_at_30 |
|
value: 68.008 |
|
- type: mrr_at_50 |
|
value: 68.083 |
|
- type: mrr_at_70 |
|
value: 68.105 |
|
- type: mrr_at_100 |
|
value: 68.116 |
|
- type: mrr_at_200 |
|
value: 68.12700000000001 |
|
- type: mrr_at_300 |
|
value: 68.13 |
|
- type: mrr_at_500 |
|
value: 68.132 |
|
- type: mrr_at_700 |
|
value: 68.133 |
|
- type: mrr_at_1000 |
|
value: 68.133 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 81.796 |
|
- type: ndcg_at_2 |
|
value: 67.999 |
|
- type: ndcg_at_3 |
|
value: 72.15599999999999 |
|
- type: ndcg_at_5 |
|
value: 74.99900000000001 |
|
- type: ndcg_at_7 |
|
value: 76.179 |
|
- type: ndcg_at_10 |
|
value: 77.022 |
|
- type: ndcg_at_20 |
|
value: 78.173 |
|
- type: ndcg_at_30 |
|
value: 78.648 |
|
- type: ndcg_at_50 |
|
value: 79.104 |
|
- type: ndcg_at_70 |
|
value: 79.335 |
|
- type: ndcg_at_100 |
|
value: 79.56 |
|
- type: ndcg_at_200 |
|
value: 79.911 |
|
- type: ndcg_at_300 |
|
value: 80.045 |
|
- type: ndcg_at_500 |
|
value: 80.19500000000001 |
|
- type: ndcg_at_700 |
|
value: 80.281 |
|
- type: ndcg_at_1000 |
|
value: 80.35 |
|
- type: map_at_1 |
|
value: 40.898 |
|
- type: map_at_2 |
|
value: 62.016000000000005 |
|
- type: map_at_3 |
|
value: 66.121 |
|
- type: map_at_5 |
|
value: 68.471 |
|
- type: map_at_7 |
|
value: 69.261 |
|
- type: map_at_10 |
|
value: 69.738 |
|
- type: map_at_20 |
|
value: 70.208 |
|
- type: map_at_30 |
|
value: 70.343 |
|
- type: map_at_50 |
|
value: 70.43700000000001 |
|
- type: map_at_70 |
|
value: 70.47099999999999 |
|
- type: map_at_100 |
|
value: 70.498 |
|
- type: map_at_200 |
|
value: 70.526 |
|
- type: map_at_300 |
|
value: 70.533 |
|
- type: map_at_500 |
|
value: 70.538 |
|
- type: map_at_700 |
|
value: 70.541 |
|
- type: map_at_1000 |
|
value: 70.542 |
|
- type: recall_at_1 |
|
value: 40.898 |
|
- type: recall_at_2 |
|
value: 63.964 |
|
- type: recall_at_3 |
|
value: 70.743 |
|
- type: recall_at_5 |
|
value: 76.36699999999999 |
|
- type: recall_at_7 |
|
value: 79.142 |
|
- type: recall_at_10 |
|
value: 81.404 |
|
- type: recall_at_20 |
|
value: 85.111 |
|
- type: recall_at_30 |
|
value: 86.92800000000001 |
|
- type: recall_at_50 |
|
value: 88.899 |
|
- type: recall_at_70 |
|
value: 90.01400000000001 |
|
- type: recall_at_100 |
|
value: 91.19500000000001 |
|
- type: recall_at_200 |
|
value: 93.234 |
|
- type: recall_at_300 |
|
value: 94.105 |
|
- type: recall_at_500 |
|
value: 95.159 |
|
- type: recall_at_700 |
|
value: 95.8 |
|
- type: recall_at_1000 |
|
value: 96.34700000000001 |
|
- type: precision_at_1 |
|
value: 81.796 |
|
- type: precision_at_2 |
|
value: 63.964 |
|
- type: precision_at_3 |
|
value: 47.162 |
|
- type: precision_at_5 |
|
value: 30.547 |
|
- type: precision_at_7 |
|
value: 22.612 |
|
- type: precision_at_10 |
|
value: 16.281000000000002 |
|
- type: precision_at_20 |
|
value: 8.511000000000001 |
|
- type: precision_at_30 |
|
value: 5.795 |
|
- type: precision_at_50 |
|
value: 3.556 |
|
- type: precision_at_70 |
|
value: 2.572 |
|
- type: precision_at_100 |
|
value: 1.8239999999999998 |
|
- type: precision_at_200 |
|
value: 0.932 |
|
- type: precision_at_300 |
|
value: 0.627 |
|
- type: precision_at_500 |
|
value: 0.381 |
|
- type: precision_at_700 |
|
value: 0.27399999999999997 |
|
- type: precision_at_1000 |
|
value: 0.193 |
|
- type: mrr_at_1 |
|
value: 81.796 |
|
- type: mrr_at_2 |
|
value: 85.69200000000001 |
|
- type: mrr_at_3 |
|
value: 86.52 |
|
- type: mrr_at_5 |
|
value: 86.973 |
|
- type: mrr_at_7 |
|
value: 87.13300000000001 |
|
- type: mrr_at_10 |
|
value: 87.208 |
|
- type: mrr_at_20 |
|
value: 87.303 |
|
- type: mrr_at_30 |
|
value: 87.32799999999999 |
|
- type: mrr_at_50 |
|
value: 87.347 |
|
- type: mrr_at_70 |
|
value: 87.35199999999999 |
|
- type: mrr_at_100 |
|
value: 87.355 |
|
- type: mrr_at_200 |
|
value: 87.357 |
|
- type: mrr_at_300 |
|
value: 87.357 |
|
- type: mrr_at_500 |
|
value: 87.358 |
|
- type: mrr_at_700 |
|
value: 87.358 |
|
- type: mrr_at_1000 |
|
value: 87.358 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 94.79200000000002 |
|
- type: ap |
|
value: 92.54484356773553 |
|
- type: f1 |
|
value: 94.78965313682525 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 24.398 |
|
- type: ndcg_at_2 |
|
value: 31.336000000000002 |
|
- type: ndcg_at_3 |
|
value: 35.266999999999996 |
|
- type: ndcg_at_5 |
|
value: 39.356 |
|
- type: ndcg_at_7 |
|
value: 41.562 |
|
- type: ndcg_at_10 |
|
value: 43.408 |
|
- type: ndcg_at_20 |
|
value: 46.107 |
|
- type: ndcg_at_30 |
|
value: 47.164 |
|
- type: ndcg_at_50 |
|
value: 48.126000000000005 |
|
- type: ndcg_at_70 |
|
value: 48.626999999999995 |
|
- type: ndcg_at_100 |
|
value: 49.043 |
|
- type: ndcg_at_200 |
|
value: 49.575 |
|
- type: ndcg_at_300 |
|
value: 49.794 |
|
- type: ndcg_at_500 |
|
value: 49.942 |
|
- type: ndcg_at_700 |
|
value: 50.014 |
|
- type: ndcg_at_1000 |
|
value: 50.077000000000005 |
|
- type: map_at_1 |
|
value: 23.723 |
|
- type: map_at_2 |
|
value: 29.593000000000004 |
|
- type: map_at_3 |
|
value: 32.273 |
|
- type: map_at_5 |
|
value: 34.587 |
|
- type: map_at_7 |
|
value: 35.589999999999996 |
|
- type: map_at_10 |
|
value: 36.296 |
|
- type: map_at_20 |
|
value: 37.059999999999995 |
|
- type: map_at_30 |
|
value: 37.265 |
|
- type: map_at_50 |
|
value: 37.402 |
|
- type: map_at_70 |
|
value: 37.454 |
|
- type: map_at_100 |
|
value: 37.486999999999995 |
|
- type: map_at_200 |
|
value: 37.516 |
|
- type: map_at_300 |
|
value: 37.524 |
|
- type: map_at_500 |
|
value: 37.528 |
|
- type: map_at_700 |
|
value: 37.529 |
|
- type: map_at_1000 |
|
value: 37.53 |
|
- type: recall_at_1 |
|
value: 23.723 |
|
- type: recall_at_2 |
|
value: 35.355 |
|
- type: recall_at_3 |
|
value: 43.22 |
|
- type: recall_at_5 |
|
value: 53.025 |
|
- type: recall_at_7 |
|
value: 59.327 |
|
- type: recall_at_10 |
|
value: 65.302 |
|
- type: recall_at_20 |
|
value: 75.765 |
|
- type: recall_at_30 |
|
value: 80.632 |
|
- type: recall_at_50 |
|
value: 85.63499999999999 |
|
- type: recall_at_70 |
|
value: 88.554 |
|
- type: recall_at_100 |
|
value: 91.16300000000001 |
|
- type: recall_at_200 |
|
value: 94.85 |
|
- type: recall_at_300 |
|
value: 96.532 |
|
- type: recall_at_500 |
|
value: 97.751 |
|
- type: recall_at_700 |
|
value: 98.383 |
|
- type: recall_at_1000 |
|
value: 98.97 |
|
- type: precision_at_1 |
|
value: 24.398 |
|
- type: precision_at_2 |
|
value: 18.274 |
|
- type: precision_at_3 |
|
value: 14.951999999999998 |
|
- type: precision_at_5 |
|
value: 11.052 |
|
- type: precision_at_7 |
|
value: 8.84 |
|
- type: precision_at_10 |
|
value: 6.8309999999999995 |
|
- type: precision_at_20 |
|
value: 3.978 |
|
- type: precision_at_30 |
|
value: 2.827 |
|
- type: precision_at_50 |
|
value: 1.807 |
|
- type: precision_at_70 |
|
value: 1.336 |
|
- type: precision_at_100 |
|
value: 0.964 |
|
- type: precision_at_200 |
|
value: 0.502 |
|
- type: precision_at_300 |
|
value: 0.34099999999999997 |
|
- type: precision_at_500 |
|
value: 0.208 |
|
- type: precision_at_700 |
|
value: 0.15 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: mrr_at_1 |
|
value: 24.398 |
|
- type: mrr_at_2 |
|
value: 30.351 |
|
- type: mrr_at_3 |
|
value: 33.001000000000005 |
|
- type: mrr_at_5 |
|
value: 35.228 |
|
- type: mrr_at_7 |
|
value: 36.223 |
|
- type: mrr_at_10 |
|
value: 36.903999999999996 |
|
- type: mrr_at_20 |
|
value: 37.631 |
|
- type: mrr_at_30 |
|
value: 37.830000000000005 |
|
- type: mrr_at_50 |
|
value: 37.955 |
|
- type: mrr_at_70 |
|
value: 38.003 |
|
- type: mrr_at_100 |
|
value: 38.033 |
|
- type: mrr_at_200 |
|
value: 38.059 |
|
- type: mrr_at_300 |
|
value: 38.066 |
|
- type: mrr_at_500 |
|
value: 38.068999999999996 |
|
- type: mrr_at_700 |
|
value: 38.07 |
|
- type: mrr_at_1000 |
|
value: 38.07 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 96.35658914728683 |
|
- type: f1 |
|
value: 96.15039630903114 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 86.29730962152303 |
|
- type: f1 |
|
value: 71.12166316567485 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 79.98991257565568 |
|
- type: f1 |
|
value: 77.41680115095276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 82.1990585070612 |
|
- type: f1 |
|
value: 82.23719179179362 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 40.03019554933584 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 38.999760551497815 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 32.72383151953079 |
|
- type: mrr |
|
value: 33.93989699030721 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 51.858000000000004 |
|
- type: ndcg_at_2 |
|
value: 49.675999999999995 |
|
- type: ndcg_at_3 |
|
value: 47.519 |
|
- type: ndcg_at_5 |
|
value: 45.198 |
|
- type: ndcg_at_7 |
|
value: 43.504 |
|
- type: ndcg_at_10 |
|
value: 41.88 |
|
- type: ndcg_at_20 |
|
value: 39.122 |
|
- type: ndcg_at_30 |
|
value: 37.95 |
|
- type: ndcg_at_50 |
|
value: 37.602999999999994 |
|
- type: ndcg_at_70 |
|
value: 37.836 |
|
- type: ndcg_at_100 |
|
value: 38.493 |
|
- type: ndcg_at_200 |
|
value: 40.187 |
|
- type: ndcg_at_300 |
|
value: 41.524 |
|
- type: ndcg_at_500 |
|
value: 43.657000000000004 |
|
- type: ndcg_at_700 |
|
value: 45.234 |
|
- type: ndcg_at_1000 |
|
value: 47.047 |
|
- type: map_at_1 |
|
value: 6.392 |
|
- type: map_at_2 |
|
value: 10.113 |
|
- type: map_at_3 |
|
value: 11.543000000000001 |
|
- type: map_at_5 |
|
value: 13.729 |
|
- type: map_at_7 |
|
value: 14.985000000000001 |
|
- type: map_at_10 |
|
value: 16.217000000000002 |
|
- type: map_at_20 |
|
value: 18.106 |
|
- type: map_at_30 |
|
value: 18.878 |
|
- type: map_at_50 |
|
value: 19.822 |
|
- type: map_at_70 |
|
value: 20.352999999999998 |
|
- type: map_at_100 |
|
value: 20.827 |
|
- type: map_at_200 |
|
value: 21.512 |
|
- type: map_at_300 |
|
value: 21.826 |
|
- type: map_at_500 |
|
value: 22.155 |
|
- type: map_at_700 |
|
value: 22.349 |
|
- type: map_at_1000 |
|
value: 22.531000000000002 |
|
- type: recall_at_1 |
|
value: 6.392 |
|
- type: recall_at_2 |
|
value: 11.215 |
|
- type: recall_at_3 |
|
value: 13.231000000000002 |
|
- type: recall_at_5 |
|
value: 16.66 |
|
- type: recall_at_7 |
|
value: 18.802 |
|
- type: recall_at_10 |
|
value: 21.185000000000002 |
|
- type: recall_at_20 |
|
value: 25.35 |
|
- type: recall_at_30 |
|
value: 27.91 |
|
- type: recall_at_50 |
|
value: 32.845 |
|
- type: recall_at_70 |
|
value: 35.789 |
|
- type: recall_at_100 |
|
value: 39.247 |
|
- type: recall_at_200 |
|
value: 46.655 |
|
- type: recall_at_300 |
|
value: 51.43299999999999 |
|
- type: recall_at_500 |
|
value: 59.472 |
|
- type: recall_at_700 |
|
value: 64.742 |
|
- type: recall_at_1000 |
|
value: 70.97099999999999 |
|
- type: precision_at_1 |
|
value: 53.559999999999995 |
|
- type: precision_at_2 |
|
value: 48.762 |
|
- type: precision_at_3 |
|
value: 44.169000000000004 |
|
- type: precision_at_5 |
|
value: 39.071 |
|
- type: precision_at_7 |
|
value: 35.161 |
|
- type: precision_at_10 |
|
value: 31.238 |
|
- type: precision_at_20 |
|
value: 23.064999999999998 |
|
- type: precision_at_30 |
|
value: 18.844 |
|
- type: precision_at_50 |
|
value: 14.601 |
|
- type: precision_at_70 |
|
value: 12.088000000000001 |
|
- type: precision_at_100 |
|
value: 9.844999999999999 |
|
- type: precision_at_200 |
|
value: 6.358 |
|
- type: precision_at_300 |
|
value: 4.915 |
|
- type: precision_at_500 |
|
value: 3.531 |
|
- type: precision_at_700 |
|
value: 2.8649999999999998 |
|
- type: precision_at_1000 |
|
value: 2.289 |
|
- type: mrr_at_1 |
|
value: 54.17999999999999 |
|
- type: mrr_at_2 |
|
value: 59.288 |
|
- type: mrr_at_3 |
|
value: 60.836 |
|
- type: mrr_at_5 |
|
value: 62.275999999999996 |
|
- type: mrr_at_7 |
|
value: 62.688 |
|
- type: mrr_at_10 |
|
value: 62.865 |
|
- type: mrr_at_20 |
|
value: 63.11 |
|
- type: mrr_at_30 |
|
value: 63.193999999999996 |
|
- type: mrr_at_50 |
|
value: 63.258 |
|
- type: mrr_at_70 |
|
value: 63.278 |
|
- type: mrr_at_100 |
|
value: 63.297000000000004 |
|
- type: mrr_at_200 |
|
value: 63.315999999999995 |
|
- type: mrr_at_300 |
|
value: 63.318 |
|
- type: mrr_at_500 |
|
value: 63.32299999999999 |
|
- type: mrr_at_700 |
|
value: 63.324000000000005 |
|
- type: mrr_at_1000 |
|
value: 63.324999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 50.897999999999996 |
|
- type: ndcg_at_2 |
|
value: 59.126 |
|
- type: ndcg_at_3 |
|
value: 63.093999999999994 |
|
- type: ndcg_at_5 |
|
value: 67.197 |
|
- type: ndcg_at_7 |
|
value: 68.719 |
|
- type: ndcg_at_10 |
|
value: 69.915 |
|
- type: ndcg_at_20 |
|
value: 71.229 |
|
- type: ndcg_at_30 |
|
value: 71.667 |
|
- type: ndcg_at_50 |
|
value: 71.98 |
|
- type: ndcg_at_70 |
|
value: 72.127 |
|
- type: ndcg_at_100 |
|
value: 72.217 |
|
- type: ndcg_at_200 |
|
value: 72.319 |
|
- type: ndcg_at_300 |
|
value: 72.347 |
|
- type: ndcg_at_500 |
|
value: 72.37 |
|
- type: ndcg_at_700 |
|
value: 72.379 |
|
- type: ndcg_at_1000 |
|
value: 72.381 |
|
- type: map_at_1 |
|
value: 45.297 |
|
- type: map_at_2 |
|
value: 55.596000000000004 |
|
- type: map_at_3 |
|
value: 58.724 |
|
- type: map_at_5 |
|
value: 61.387 |
|
- type: map_at_7 |
|
value: 62.173 |
|
- type: map_at_10 |
|
value: 62.69 |
|
- type: map_at_20 |
|
value: 63.125 |
|
- type: map_at_30 |
|
value: 63.223 |
|
- type: map_at_50 |
|
value: 63.27700000000001 |
|
- type: map_at_70 |
|
value: 63.295 |
|
- type: map_at_100 |
|
value: 63.303 |
|
- type: map_at_200 |
|
value: 63.31 |
|
- type: map_at_300 |
|
value: 63.31099999999999 |
|
- type: map_at_500 |
|
value: 63.312000000000005 |
|
- type: map_at_700 |
|
value: 63.312000000000005 |
|
- type: map_at_1000 |
|
value: 63.312000000000005 |
|
- type: recall_at_1 |
|
value: 45.297 |
|
- type: recall_at_2 |
|
value: 63.866 |
|
- type: recall_at_3 |
|
value: 71.898 |
|
- type: recall_at_5 |
|
value: 81.16600000000001 |
|
- type: recall_at_7 |
|
value: 85.301 |
|
- type: recall_at_10 |
|
value: 88.94800000000001 |
|
- type: recall_at_20 |
|
value: 93.719 |
|
- type: recall_at_30 |
|
value: 95.628 |
|
- type: recall_at_50 |
|
value: 97.14699999999999 |
|
- type: recall_at_70 |
|
value: 97.955 |
|
- type: recall_at_100 |
|
value: 98.48599999999999 |
|
- type: recall_at_200 |
|
value: 99.157 |
|
- type: recall_at_300 |
|
value: 99.355 |
|
- type: recall_at_500 |
|
value: 99.53699999999999 |
|
- type: recall_at_700 |
|
value: 99.62299999999999 |
|
- type: recall_at_1000 |
|
value: 99.638 |
|
- type: precision_at_1 |
|
value: 50.897999999999996 |
|
- type: precision_at_2 |
|
value: 36.703 |
|
- type: precision_at_3 |
|
value: 27.926000000000002 |
|
- type: precision_at_5 |
|
value: 19.276 |
|
- type: precision_at_7 |
|
value: 14.533999999999999 |
|
- type: precision_at_10 |
|
value: 10.678 |
|
- type: precision_at_20 |
|
value: 5.663 |
|
- type: precision_at_30 |
|
value: 3.8600000000000003 |
|
- type: precision_at_50 |
|
value: 2.358 |
|
- type: precision_at_70 |
|
value: 1.7000000000000002 |
|
- type: precision_at_100 |
|
value: 1.198 |
|
- type: precision_at_200 |
|
value: 0.603 |
|
- type: precision_at_300 |
|
value: 0.40299999999999997 |
|
- type: precision_at_500 |
|
value: 0.242 |
|
- type: precision_at_700 |
|
value: 0.173 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: mrr_at_1 |
|
value: 50.897999999999996 |
|
- type: mrr_at_2 |
|
value: 59.994 |
|
- type: mrr_at_3 |
|
value: 62.553000000000004 |
|
- type: mrr_at_5 |
|
value: 64.307 |
|
- type: mrr_at_7 |
|
value: 64.864 |
|
- type: mrr_at_10 |
|
value: 65.22200000000001 |
|
- type: mrr_at_20 |
|
value: 65.499 |
|
- type: mrr_at_30 |
|
value: 65.561 |
|
- type: mrr_at_50 |
|
value: 65.592 |
|
- type: mrr_at_70 |
|
value: 65.602 |
|
- type: mrr_at_100 |
|
value: 65.607 |
|
- type: mrr_at_200 |
|
value: 65.61099999999999 |
|
- type: mrr_at_300 |
|
value: 65.61200000000001 |
|
- type: mrr_at_500 |
|
value: 65.61200000000001 |
|
- type: mrr_at_700 |
|
value: 65.61200000000001 |
|
- type: mrr_at_1000 |
|
value: 65.61200000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 82.96 |
|
- type: ndcg_at_2 |
|
value: 85.614 |
|
- type: ndcg_at_3 |
|
value: 87.19 |
|
- type: ndcg_at_5 |
|
value: 88.654 |
|
- type: ndcg_at_7 |
|
value: 89.287 |
|
- type: ndcg_at_10 |
|
value: 89.785 |
|
- type: ndcg_at_20 |
|
value: 90.384 |
|
- type: ndcg_at_30 |
|
value: 90.589 |
|
- type: ndcg_at_50 |
|
value: 90.738 |
|
- type: ndcg_at_70 |
|
value: 90.789 |
|
- type: ndcg_at_100 |
|
value: 90.824 |
|
- type: ndcg_at_200 |
|
value: 90.869 |
|
- type: ndcg_at_300 |
|
value: 90.881 |
|
- type: ndcg_at_500 |
|
value: 90.886 |
|
- type: ndcg_at_700 |
|
value: 90.889 |
|
- type: ndcg_at_1000 |
|
value: 90.889 |
|
- type: map_at_1 |
|
value: 72.152 |
|
- type: map_at_2 |
|
value: 80.818 |
|
- type: map_at_3 |
|
value: 83.462 |
|
- type: map_at_5 |
|
value: 85.286 |
|
- type: map_at_7 |
|
value: 85.921 |
|
- type: map_at_10 |
|
value: 86.334 |
|
- type: map_at_20 |
|
value: 86.737 |
|
- type: map_at_30 |
|
value: 86.847 |
|
- type: map_at_50 |
|
value: 86.911 |
|
- type: map_at_70 |
|
value: 86.932 |
|
- type: map_at_100 |
|
value: 86.943 |
|
- type: map_at_200 |
|
value: 86.953 |
|
- type: map_at_300 |
|
value: 86.955 |
|
- type: map_at_500 |
|
value: 86.956 |
|
- type: map_at_700 |
|
value: 86.956 |
|
- type: map_at_1000 |
|
value: 86.956 |
|
- type: recall_at_1 |
|
value: 72.152 |
|
- type: recall_at_2 |
|
value: 84.129 |
|
- type: recall_at_3 |
|
value: 88.87 |
|
- type: recall_at_5 |
|
value: 93.067 |
|
- type: recall_at_7 |
|
value: 94.882 |
|
- type: recall_at_10 |
|
value: 96.353 |
|
- type: recall_at_20 |
|
value: 98.26700000000001 |
|
- type: recall_at_30 |
|
value: 98.92999999999999 |
|
- type: recall_at_50 |
|
value: 99.441 |
|
- type: recall_at_70 |
|
value: 99.619 |
|
- type: recall_at_100 |
|
value: 99.748 |
|
- type: recall_at_200 |
|
value: 99.911 |
|
- type: recall_at_300 |
|
value: 99.956 |
|
- type: recall_at_500 |
|
value: 99.98 |
|
- type: recall_at_700 |
|
value: 99.991 |
|
- type: recall_at_1000 |
|
value: 99.996 |
|
- type: precision_at_1 |
|
value: 82.96 |
|
- type: precision_at_2 |
|
value: 52.175000000000004 |
|
- type: precision_at_3 |
|
value: 38.223 |
|
- type: precision_at_5 |
|
value: 25.056 |
|
- type: precision_at_7 |
|
value: 18.717 |
|
- type: precision_at_10 |
|
value: 13.614999999999998 |
|
- type: precision_at_20 |
|
value: 7.208 |
|
- type: precision_at_30 |
|
value: 4.928 |
|
- type: precision_at_50 |
|
value: 3.024 |
|
- type: precision_at_70 |
|
value: 2.183 |
|
- type: precision_at_100 |
|
value: 1.54 |
|
- type: precision_at_200 |
|
value: 0.779 |
|
- type: precision_at_300 |
|
value: 0.521 |
|
- type: precision_at_500 |
|
value: 0.313 |
|
- type: precision_at_700 |
|
value: 0.22399999999999998 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: mrr_at_1 |
|
value: 82.96 |
|
- type: mrr_at_2 |
|
value: 87.005 |
|
- type: mrr_at_3 |
|
value: 88.07199999999999 |
|
- type: mrr_at_5 |
|
value: 88.634 |
|
- type: mrr_at_7 |
|
value: 88.793 |
|
- type: mrr_at_10 |
|
value: 88.87899999999999 |
|
- type: mrr_at_20 |
|
value: 88.94999999999999 |
|
- type: mrr_at_30 |
|
value: 88.96 |
|
- type: mrr_at_50 |
|
value: 88.965 |
|
- type: mrr_at_70 |
|
value: 88.966 |
|
- type: mrr_at_100 |
|
value: 88.967 |
|
- type: mrr_at_200 |
|
value: 88.967 |
|
- type: mrr_at_300 |
|
value: 88.967 |
|
- type: mrr_at_500 |
|
value: 88.967 |
|
- type: mrr_at_700 |
|
value: 88.967 |
|
- type: mrr_at_1000 |
|
value: 88.967 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 59.90388554491155 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 67.64232539036783 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 22.6 |
|
- type: ndcg_at_2 |
|
value: 20.355999999999998 |
|
- type: ndcg_at_3 |
|
value: 18.536 |
|
- type: ndcg_at_5 |
|
value: 16.523 |
|
- type: ndcg_at_7 |
|
value: 17.979 |
|
- type: ndcg_at_10 |
|
value: 19.908 |
|
- type: ndcg_at_20 |
|
value: 22.887 |
|
- type: ndcg_at_30 |
|
value: 24.43 |
|
- type: ndcg_at_50 |
|
value: 25.959 |
|
- type: ndcg_at_70 |
|
value: 26.989 |
|
- type: ndcg_at_100 |
|
value: 27.977 |
|
- type: ndcg_at_200 |
|
value: 29.831000000000003 |
|
- type: ndcg_at_300 |
|
value: 30.787 |
|
- type: ndcg_at_500 |
|
value: 31.974999999999998 |
|
- type: ndcg_at_700 |
|
value: 32.554 |
|
- type: ndcg_at_1000 |
|
value: 33.277 |
|
- type: map_at_1 |
|
value: 4.593 |
|
- type: map_at_2 |
|
value: 6.923 |
|
- type: map_at_3 |
|
value: 8.3 |
|
- type: map_at_5 |
|
value: 10.072000000000001 |
|
- type: map_at_7 |
|
value: 10.782 |
|
- type: map_at_10 |
|
value: 11.72 |
|
- type: map_at_20 |
|
value: 12.838 |
|
- type: map_at_30 |
|
value: 13.257 |
|
- type: map_at_50 |
|
value: 13.569 |
|
- type: map_at_70 |
|
value: 13.733 |
|
- type: map_at_100 |
|
value: 13.858999999999998 |
|
- type: map_at_200 |
|
value: 14.018 |
|
- type: map_at_300 |
|
value: 14.072999999999999 |
|
- type: map_at_500 |
|
value: 14.126 |
|
- type: map_at_700 |
|
value: 14.145 |
|
- type: map_at_1000 |
|
value: 14.161999999999999 |
|
- type: recall_at_1 |
|
value: 4.593 |
|
- type: recall_at_2 |
|
value: 7.997999999999999 |
|
- type: recall_at_3 |
|
value: 10.563 |
|
- type: recall_at_5 |
|
value: 14.907 |
|
- type: recall_at_7 |
|
value: 17.4 |
|
- type: recall_at_10 |
|
value: 21.18 |
|
- type: recall_at_20 |
|
value: 28.144999999999996 |
|
- type: recall_at_30 |
|
value: 32.462 |
|
- type: recall_at_50 |
|
value: 37.267 |
|
- type: recall_at_70 |
|
value: 40.875 |
|
- type: recall_at_100 |
|
value: 44.641999999999996 |
|
- type: recall_at_200 |
|
value: 52.573 |
|
- type: recall_at_300 |
|
value: 57.089999999999996 |
|
- type: recall_at_500 |
|
value: 63.14300000000001 |
|
- type: recall_at_700 |
|
value: 66.313 |
|
- type: recall_at_1000 |
|
value: 70.458 |
|
- type: precision_at_1 |
|
value: 22.6 |
|
- type: precision_at_2 |
|
value: 19.7 |
|
- type: precision_at_3 |
|
value: 17.333000000000002 |
|
- type: precision_at_5 |
|
value: 14.680000000000001 |
|
- type: precision_at_7 |
|
value: 12.243 |
|
- type: precision_at_10 |
|
value: 10.440000000000001 |
|
- type: precision_at_20 |
|
value: 6.944999999999999 |
|
- type: precision_at_30 |
|
value: 5.333 |
|
- type: precision_at_50 |
|
value: 3.678 |
|
- type: precision_at_70 |
|
value: 2.881 |
|
- type: precision_at_100 |
|
value: 2.2030000000000003 |
|
- type: precision_at_200 |
|
value: 1.295 |
|
- type: precision_at_300 |
|
value: 0.9369999999999999 |
|
- type: precision_at_500 |
|
value: 0.622 |
|
- type: precision_at_700 |
|
value: 0.466 |
|
- type: precision_at_1000 |
|
value: 0.347 |
|
- type: mrr_at_1 |
|
value: 22.6 |
|
- type: mrr_at_2 |
|
value: 27.900000000000002 |
|
- type: mrr_at_3 |
|
value: 30.067 |
|
- type: mrr_at_5 |
|
value: 32.207 |
|
- type: mrr_at_7 |
|
value: 33.004 |
|
- type: mrr_at_10 |
|
value: 33.596 |
|
- type: mrr_at_20 |
|
value: 34.268 |
|
- type: mrr_at_30 |
|
value: 34.492 |
|
- type: mrr_at_50 |
|
value: 34.628 |
|
- type: mrr_at_70 |
|
value: 34.681 |
|
- type: mrr_at_100 |
|
value: 34.717 |
|
- type: mrr_at_200 |
|
value: 34.757 |
|
- type: mrr_at_300 |
|
value: 34.768 |
|
- type: mrr_at_500 |
|
value: 34.772 |
|
- type: mrr_at_700 |
|
value: 34.774 |
|
- type: mrr_at_1000 |
|
value: 34.775 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.90122745229677 |
|
- type: cos_sim_spearman |
|
value: 82.92294737327579 |
|
- type: euclidean_pearson |
|
value: 84.08979655773187 |
|
- type: euclidean_spearman |
|
value: 82.92294657285412 |
|
- type: manhattan_pearson |
|
value: 84.09347480531832 |
|
- type: manhattan_spearman |
|
value: 82.91564613948087 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.01218713698583 |
|
- type: cos_sim_spearman |
|
value: 79.46865215168464 |
|
- type: euclidean_pearson |
|
value: 83.22621889891909 |
|
- type: euclidean_spearman |
|
value: 79.46853821709514 |
|
- type: manhattan_pearson |
|
value: 83.69962580788805 |
|
- type: manhattan_spearman |
|
value: 79.9561593356932 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.98438696342964 |
|
- type: cos_sim_spearman |
|
value: 89.15419511870839 |
|
- type: euclidean_pearson |
|
value: 88.49646141802894 |
|
- type: euclidean_spearman |
|
value: 89.15419503946019 |
|
- type: manhattan_pearson |
|
value: 88.6420585616327 |
|
- type: manhattan_spearman |
|
value: 89.42648950757743 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.30772547759544 |
|
- type: cos_sim_spearman |
|
value: 84.93199878424691 |
|
- type: euclidean_pearson |
|
value: 86.16266630395455 |
|
- type: euclidean_spearman |
|
value: 84.93198798543634 |
|
- type: manhattan_pearson |
|
value: 86.14285723189803 |
|
- type: manhattan_spearman |
|
value: 85.0361672522687 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 90.21342071197127 |
|
- type: cos_sim_spearman |
|
value: 90.7407512744838 |
|
- type: euclidean_pearson |
|
value: 90.1517933113061 |
|
- type: euclidean_spearman |
|
value: 90.74075125431919 |
|
- type: manhattan_pearson |
|
value: 90.17963034676193 |
|
- type: manhattan_spearman |
|
value: 90.88999275865135 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.82518054100498 |
|
- type: cos_sim_spearman |
|
value: 87.81570533154735 |
|
- type: euclidean_pearson |
|
value: 86.91684561573618 |
|
- type: euclidean_spearman |
|
value: 87.81570533154735 |
|
- type: manhattan_pearson |
|
value: 86.98311935744032 |
|
- type: manhattan_spearman |
|
value: 87.9594667151966 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 92.09578436612053 |
|
- type: cos_sim_spearman |
|
value: 92.01519349090438 |
|
- type: euclidean_pearson |
|
value: 92.07113635890894 |
|
- type: euclidean_spearman |
|
value: 92.01519349090438 |
|
- type: manhattan_pearson |
|
value: 91.89343820765625 |
|
- type: manhattan_spearman |
|
value: 91.7443476810177 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.29997751464549 |
|
- type: cos_sim_spearman |
|
value: 68.36425436812782 |
|
- type: euclidean_pearson |
|
value: 69.81381677661783 |
|
- type: euclidean_spearman |
|
value: 68.36425436812782 |
|
- type: manhattan_pearson |
|
value: 69.92823397008026 |
|
- type: manhattan_spearman |
|
value: 68.35770640039254 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.39126315452359 |
|
- type: cos_sim_spearman |
|
value: 88.99708463265337 |
|
- type: euclidean_pearson |
|
value: 88.60793820038607 |
|
- type: euclidean_spearman |
|
value: 88.99708463265337 |
|
- type: manhattan_pearson |
|
value: 88.69860633571047 |
|
- type: manhattan_spearman |
|
value: 89.20094593888012 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 86.58028062818582 |
|
- type: mrr |
|
value: 96.53586790841693 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 66.333 |
|
- type: ndcg_at_2 |
|
value: 70.655 |
|
- type: ndcg_at_3 |
|
value: 72.801 |
|
- type: ndcg_at_5 |
|
value: 75.793 |
|
- type: ndcg_at_7 |
|
value: 76.946 |
|
- type: ndcg_at_10 |
|
value: 77.66199999999999 |
|
- type: ndcg_at_20 |
|
value: 78.786 |
|
- type: ndcg_at_30 |
|
value: 79.066 |
|
- type: ndcg_at_50 |
|
value: 79.255 |
|
- type: ndcg_at_70 |
|
value: 79.423 |
|
- type: ndcg_at_100 |
|
value: 79.476 |
|
- type: ndcg_at_200 |
|
value: 79.65299999999999 |
|
- type: ndcg_at_300 |
|
value: 79.696 |
|
- type: ndcg_at_500 |
|
value: 79.73599999999999 |
|
- type: ndcg_at_700 |
|
value: 79.77199999999999 |
|
- type: ndcg_at_1000 |
|
value: 79.77199999999999 |
|
- type: map_at_1 |
|
value: 63.383 |
|
- type: map_at_2 |
|
value: 68.144 |
|
- type: map_at_3 |
|
value: 70.19800000000001 |
|
- type: map_at_5 |
|
value: 72.38 |
|
- type: map_at_7 |
|
value: 72.955 |
|
- type: map_at_10 |
|
value: 73.312 |
|
- type: map_at_20 |
|
value: 73.678 |
|
- type: map_at_30 |
|
value: 73.72800000000001 |
|
- type: map_at_50 |
|
value: 73.75500000000001 |
|
- type: map_at_70 |
|
value: 73.771 |
|
- type: map_at_100 |
|
value: 73.776 |
|
- type: map_at_200 |
|
value: 73.783 |
|
- type: map_at_300 |
|
value: 73.784 |
|
- type: map_at_500 |
|
value: 73.785 |
|
- type: map_at_700 |
|
value: 73.786 |
|
- type: map_at_1000 |
|
value: 73.786 |
|
- type: recall_at_1 |
|
value: 63.383 |
|
- type: recall_at_2 |
|
value: 72.283 |
|
- type: recall_at_3 |
|
value: 77.183 |
|
- type: recall_at_5 |
|
value: 84.56099999999999 |
|
- type: recall_at_7 |
|
value: 87.67200000000001 |
|
- type: recall_at_10 |
|
value: 89.822 |
|
- type: recall_at_20 |
|
value: 94 |
|
- type: recall_at_30 |
|
value: 95.333 |
|
- type: recall_at_50 |
|
value: 96.333 |
|
- type: recall_at_70 |
|
value: 97.333 |
|
- type: recall_at_100 |
|
value: 97.667 |
|
- type: recall_at_200 |
|
value: 99 |
|
- type: recall_at_300 |
|
value: 99.333 |
|
- type: recall_at_500 |
|
value: 99.667 |
|
- type: recall_at_700 |
|
value: 100 |
|
- type: recall_at_1000 |
|
value: 100 |
|
- type: precision_at_1 |
|
value: 66.333 |
|
- type: precision_at_2 |
|
value: 38.667 |
|
- type: precision_at_3 |
|
value: 28.111000000000004 |
|
- type: precision_at_5 |
|
value: 18.933 |
|
- type: precision_at_7 |
|
value: 14.094999999999999 |
|
- type: precision_at_10 |
|
value: 10.167 |
|
- type: precision_at_20 |
|
value: 5.35 |
|
- type: precision_at_30 |
|
value: 3.611 |
|
- type: precision_at_50 |
|
value: 2.1870000000000003 |
|
- type: precision_at_70 |
|
value: 1.576 |
|
- type: precision_at_100 |
|
value: 1.107 |
|
- type: precision_at_200 |
|
value: 0.5599999999999999 |
|
- type: precision_at_300 |
|
value: 0.374 |
|
- type: precision_at_500 |
|
value: 0.22499999999999998 |
|
- type: precision_at_700 |
|
value: 0.161 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: mrr_at_1 |
|
value: 66.333 |
|
- type: mrr_at_2 |
|
value: 70.833 |
|
- type: mrr_at_3 |
|
value: 72.167 |
|
- type: mrr_at_5 |
|
value: 73.6 |
|
- type: mrr_at_7 |
|
value: 74.084 |
|
- type: mrr_at_10 |
|
value: 74.283 |
|
- type: mrr_at_20 |
|
value: 74.54499999999999 |
|
- type: mrr_at_30 |
|
value: 74.59599999999999 |
|
- type: mrr_at_50 |
|
value: 74.622 |
|
- type: mrr_at_70 |
|
value: 74.639 |
|
- type: mrr_at_100 |
|
value: 74.643 |
|
- type: mrr_at_200 |
|
value: 74.65 |
|
- type: mrr_at_300 |
|
value: 74.652 |
|
- type: mrr_at_500 |
|
value: 74.653 |
|
- type: mrr_at_700 |
|
value: 74.653 |
|
- type: mrr_at_1000 |
|
value: 74.653 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.84554455445544 |
|
- type: cos_sim_ap |
|
value: 96.31178339136798 |
|
- type: cos_sim_f1 |
|
value: 92.1921921921922 |
|
- type: cos_sim_precision |
|
value: 92.28456913827655 |
|
- type: cos_sim_recall |
|
value: 92.10000000000001 |
|
- type: dot_accuracy |
|
value: 99.84554455445544 |
|
- type: dot_ap |
|
value: 96.31178339136797 |
|
- type: dot_f1 |
|
value: 92.1921921921922 |
|
- type: dot_precision |
|
value: 92.28456913827655 |
|
- type: dot_recall |
|
value: 92.10000000000001 |
|
- type: euclidean_accuracy |
|
value: 99.84554455445544 |
|
- type: euclidean_ap |
|
value: 96.31178339136798 |
|
- type: euclidean_f1 |
|
value: 92.1921921921922 |
|
- type: euclidean_precision |
|
value: 92.28456913827655 |
|
- type: euclidean_recall |
|
value: 92.10000000000001 |
|
- type: manhattan_accuracy |
|
value: 99.84752475247525 |
|
- type: manhattan_ap |
|
value: 96.4591954606088 |
|
- type: manhattan_f1 |
|
value: 92.25352112676056 |
|
- type: manhattan_precision |
|
value: 92.81376518218623 |
|
- type: manhattan_recall |
|
value: 91.7 |
|
- type: max_accuracy |
|
value: 99.84752475247525 |
|
- type: max_ap |
|
value: 96.4591954606088 |
|
- type: max_f1 |
|
value: 92.25352112676056 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 74.24659759283294 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 46.77690051260451 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 55.68436757803185 |
|
- type: mrr |
|
value: 56.82157711569475 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.652482405629843 |
|
- type: cos_sim_spearman |
|
value: 31.16341822347735 |
|
- type: dot_pearson |
|
value: 31.652479892699837 |
|
- type: dot_spearman |
|
value: 31.16341822347735 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 92 |
|
- type: ndcg_at_2 |
|
value: 90.839 |
|
- type: ndcg_at_3 |
|
value: 90.642 |
|
- type: ndcg_at_5 |
|
value: 90.348 |
|
- type: ndcg_at_7 |
|
value: 89.015 |
|
- type: ndcg_at_10 |
|
value: 87.599 |
|
- type: ndcg_at_20 |
|
value: 84.434 |
|
- type: ndcg_at_30 |
|
value: 81.655 |
|
- type: ndcg_at_50 |
|
value: 77.278 |
|
- type: ndcg_at_70 |
|
value: 73.957 |
|
- type: ndcg_at_100 |
|
value: 69.56 |
|
- type: ndcg_at_200 |
|
value: 60.724000000000004 |
|
- type: ndcg_at_300 |
|
value: 57.245000000000005 |
|
- type: ndcg_at_500 |
|
value: 56.316 |
|
- type: ndcg_at_700 |
|
value: 58.399 |
|
- type: ndcg_at_1000 |
|
value: 62.21600000000001 |
|
- type: map_at_1 |
|
value: 0.247 |
|
- type: map_at_2 |
|
value: 0.488 |
|
- type: map_at_3 |
|
value: 0.7230000000000001 |
|
- type: map_at_5 |
|
value: 1.204 |
|
- type: map_at_7 |
|
value: 1.6500000000000001 |
|
- type: map_at_10 |
|
value: 2.292 |
|
- type: map_at_20 |
|
value: 4.274 |
|
- type: map_at_30 |
|
value: 6.027 |
|
- type: map_at_50 |
|
value: 9.083 |
|
- type: map_at_70 |
|
value: 11.751000000000001 |
|
- type: map_at_100 |
|
value: 14.912 |
|
- type: map_at_200 |
|
value: 22.213 |
|
- type: map_at_300 |
|
value: 26.667999999999996 |
|
- type: map_at_500 |
|
value: 31.556 |
|
- type: map_at_700 |
|
value: 34.221000000000004 |
|
- type: map_at_1000 |
|
value: 36.443999999999996 |
|
- type: recall_at_1 |
|
value: 0.247 |
|
- type: recall_at_2 |
|
value: 0.49899999999999994 |
|
- type: recall_at_3 |
|
value: 0.742 |
|
- type: recall_at_5 |
|
value: 1.247 |
|
- type: recall_at_7 |
|
value: 1.722 |
|
- type: recall_at_10 |
|
value: 2.405 |
|
- type: recall_at_20 |
|
value: 4.583 |
|
- type: recall_at_30 |
|
value: 6.587999999999999 |
|
- type: recall_at_50 |
|
value: 10.188 |
|
- type: recall_at_70 |
|
value: 13.496 |
|
- type: recall_at_100 |
|
value: 17.578 |
|
- type: recall_at_200 |
|
value: 28.158 |
|
- type: recall_at_300 |
|
value: 35.532000000000004 |
|
- type: recall_at_500 |
|
value: 45.31 |
|
- type: recall_at_700 |
|
value: 51.822 |
|
- type: recall_at_1000 |
|
value: 58.53 |
|
- type: precision_at_1 |
|
value: 96 |
|
- type: precision_at_2 |
|
value: 96 |
|
- type: precision_at_3 |
|
value: 95.333 |
|
- type: precision_at_5 |
|
value: 94.8 |
|
- type: precision_at_7 |
|
value: 93.429 |
|
- type: precision_at_10 |
|
value: 91.4 |
|
- type: precision_at_20 |
|
value: 87.7 |
|
- type: precision_at_30 |
|
value: 84.867 |
|
- type: precision_at_50 |
|
value: 80.24 |
|
- type: precision_at_70 |
|
value: 76.371 |
|
- type: precision_at_100 |
|
value: 71.08 |
|
- type: precision_at_200 |
|
value: 59.4 |
|
- type: precision_at_300 |
|
value: 51.459999999999994 |
|
- type: precision_at_500 |
|
value: 40.644000000000005 |
|
- type: precision_at_700 |
|
value: 33.889 |
|
- type: precision_at_1000 |
|
value: 27.250000000000004 |
|
- type: mrr_at_1 |
|
value: 96 |
|
- type: mrr_at_2 |
|
value: 98 |
|
- type: mrr_at_3 |
|
value: 98 |
|
- type: mrr_at_5 |
|
value: 98 |
|
- type: mrr_at_7 |
|
value: 98 |
|
- type: mrr_at_10 |
|
value: 98 |
|
- type: mrr_at_20 |
|
value: 98 |
|
- type: mrr_at_30 |
|
value: 98 |
|
- type: mrr_at_50 |
|
value: 98 |
|
- type: mrr_at_70 |
|
value: 98 |
|
- type: mrr_at_100 |
|
value: 98 |
|
- type: mrr_at_200 |
|
value: 98 |
|
- type: mrr_at_300 |
|
value: 98 |
|
- type: mrr_at_500 |
|
value: 98 |
|
- type: mrr_at_700 |
|
value: 98 |
|
- type: mrr_at_1000 |
|
value: 98 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 43.878 |
|
- type: ndcg_at_2 |
|
value: 37.956 |
|
- type: ndcg_at_3 |
|
value: 35.053 |
|
- type: ndcg_at_5 |
|
value: 32.59 |
|
- type: ndcg_at_7 |
|
value: 30.226 |
|
- type: ndcg_at_10 |
|
value: 29.005 |
|
- type: ndcg_at_20 |
|
value: 30.11 |
|
- type: ndcg_at_30 |
|
value: 32.019999999999996 |
|
- type: ndcg_at_50 |
|
value: 34.354 |
|
- type: ndcg_at_70 |
|
value: 36.665 |
|
- type: ndcg_at_100 |
|
value: 38.888 |
|
- type: ndcg_at_200 |
|
value: 43.435 |
|
- type: ndcg_at_300 |
|
value: 45.795 |
|
- type: ndcg_at_500 |
|
value: 48.699999999999996 |
|
- type: ndcg_at_700 |
|
value: 50.242 |
|
- type: ndcg_at_1000 |
|
value: 51.529 |
|
- type: map_at_1 |
|
value: 3.521 |
|
- type: map_at_2 |
|
value: 5.309 |
|
- type: map_at_3 |
|
value: 6.576 |
|
- type: map_at_5 |
|
value: 8.97 |
|
- type: map_at_7 |
|
value: 10.194 |
|
- type: map_at_10 |
|
value: 11.949 |
|
- type: map_at_20 |
|
value: 14.686 |
|
- type: map_at_30 |
|
value: 15.8 |
|
- type: map_at_50 |
|
value: 16.59 |
|
- type: map_at_70 |
|
value: 17.2 |
|
- type: map_at_100 |
|
value: 17.765 |
|
- type: map_at_200 |
|
value: 18.636 |
|
- type: map_at_300 |
|
value: 18.972 |
|
- type: map_at_500 |
|
value: 19.301 |
|
- type: map_at_700 |
|
value: 19.445 |
|
- type: map_at_1000 |
|
value: 19.546 |
|
- type: recall_at_1 |
|
value: 3.521 |
|
- type: recall_at_2 |
|
value: 5.848 |
|
- type: recall_at_3 |
|
value: 7.657 |
|
- type: recall_at_5 |
|
value: 11.368 |
|
- type: recall_at_7 |
|
value: 13.748 |
|
- type: recall_at_10 |
|
value: 18.061 |
|
- type: recall_at_20 |
|
value: 26.844 |
|
- type: recall_at_30 |
|
value: 31.186000000000003 |
|
- type: recall_at_50 |
|
value: 35.951 |
|
- type: recall_at_70 |
|
value: 40.961999999999996 |
|
- type: recall_at_100 |
|
value: 46.743 |
|
- type: recall_at_200 |
|
value: 58.483 |
|
- type: recall_at_300 |
|
value: 65.973 |
|
- type: recall_at_500 |
|
value: 75.233 |
|
- type: recall_at_700 |
|
value: 80.472 |
|
- type: recall_at_1000 |
|
value: 85.02 |
|
- type: precision_at_1 |
|
value: 46.939 |
|
- type: precision_at_2 |
|
value: 38.775999999999996 |
|
- type: precision_at_3 |
|
value: 34.694 |
|
- type: precision_at_5 |
|
value: 31.429000000000002 |
|
- type: precision_at_7 |
|
value: 27.697 |
|
- type: precision_at_10 |
|
value: 24.490000000000002 |
|
- type: precision_at_20 |
|
value: 18.776 |
|
- type: precision_at_30 |
|
value: 15.034 |
|
- type: precision_at_50 |
|
value: 10.857 |
|
- type: precision_at_70 |
|
value: 9.096 |
|
- type: precision_at_100 |
|
value: 7.51 |
|
- type: precision_at_200 |
|
value: 4.929 |
|
- type: precision_at_300 |
|
value: 3.7760000000000002 |
|
- type: precision_at_500 |
|
value: 2.6780000000000004 |
|
- type: precision_at_700 |
|
value: 2.085 |
|
- type: precision_at_1000 |
|
value: 1.5709999999999997 |
|
- type: mrr_at_1 |
|
value: 46.939 |
|
- type: mrr_at_2 |
|
value: 55.102 |
|
- type: mrr_at_3 |
|
value: 57.823 |
|
- type: mrr_at_5 |
|
value: 60.68 |
|
- type: mrr_at_7 |
|
value: 60.972 |
|
- type: mrr_at_10 |
|
value: 61.199000000000005 |
|
- type: mrr_at_20 |
|
value: 61.831 |
|
- type: mrr_at_30 |
|
value: 61.831 |
|
- type: mrr_at_50 |
|
value: 61.873 |
|
- type: mrr_at_70 |
|
value: 61.873 |
|
- type: mrr_at_100 |
|
value: 61.873 |
|
- type: mrr_at_200 |
|
value: 61.873 |
|
- type: mrr_at_300 |
|
value: 61.873 |
|
- type: mrr_at_500 |
|
value: 61.873 |
|
- type: mrr_at_700 |
|
value: 61.873 |
|
- type: mrr_at_1000 |
|
value: 61.873 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 69.3294 |
|
- type: ap |
|
value: 14.561333393364736 |
|
- type: f1 |
|
value: 53.992309820496466 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 63.63893604980192 |
|
- type: f1 |
|
value: 63.92959380489434 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 56.270879258659775 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.71073493473207 |
|
- type: cos_sim_ap |
|
value: 81.52392540284202 |
|
- type: cos_sim_f1 |
|
value: 74.71162377994676 |
|
- type: cos_sim_precision |
|
value: 71.89558428885094 |
|
- type: cos_sim_recall |
|
value: 77.75725593667546 |
|
- type: dot_accuracy |
|
value: 88.71073493473207 |
|
- type: dot_ap |
|
value: 81.52394754041109 |
|
- type: dot_f1 |
|
value: 74.71162377994676 |
|
- type: dot_precision |
|
value: 71.89558428885094 |
|
- type: dot_recall |
|
value: 77.75725593667546 |
|
- type: euclidean_accuracy |
|
value: 88.71073493473207 |
|
- type: euclidean_ap |
|
value: 81.52392035435321 |
|
- type: euclidean_f1 |
|
value: 74.71162377994676 |
|
- type: euclidean_precision |
|
value: 71.89558428885094 |
|
- type: euclidean_recall |
|
value: 77.75725593667546 |
|
- type: manhattan_accuracy |
|
value: 88.47231328604637 |
|
- type: manhattan_ap |
|
value: 81.22907439267321 |
|
- type: manhattan_f1 |
|
value: 74.3351571446749 |
|
- type: manhattan_precision |
|
value: 71.78667977390022 |
|
- type: manhattan_recall |
|
value: 77.0712401055409 |
|
- type: max_accuracy |
|
value: 88.71073493473207 |
|
- type: max_ap |
|
value: 81.52394754041109 |
|
- type: max_f1 |
|
value: 74.71162377994676 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.85136026700819 |
|
- type: cos_sim_ap |
|
value: 87.7768002924216 |
|
- type: cos_sim_f1 |
|
value: 80.358908624794 |
|
- type: cos_sim_precision |
|
value: 76.62918209122023 |
|
- type: cos_sim_recall |
|
value: 84.47028025870034 |
|
- type: dot_accuracy |
|
value: 89.85136026700819 |
|
- type: dot_ap |
|
value: 87.77680027889778 |
|
- type: dot_f1 |
|
value: 80.358908624794 |
|
- type: dot_precision |
|
value: 76.62918209122023 |
|
- type: dot_recall |
|
value: 84.47028025870034 |
|
- type: euclidean_accuracy |
|
value: 89.85136026700819 |
|
- type: euclidean_ap |
|
value: 87.77680174697751 |
|
- type: euclidean_f1 |
|
value: 80.358908624794 |
|
- type: euclidean_precision |
|
value: 76.62918209122023 |
|
- type: euclidean_recall |
|
value: 84.47028025870034 |
|
- type: manhattan_accuracy |
|
value: 89.86300306593705 |
|
- type: manhattan_ap |
|
value: 87.78613271895861 |
|
- type: manhattan_f1 |
|
value: 80.31831016905645 |
|
- type: manhattan_precision |
|
value: 76.68230516070304 |
|
- type: manhattan_recall |
|
value: 84.3162919618109 |
|
- type: max_accuracy |
|
value: 89.86300306593705 |
|
- type: max_ap |
|
value: 87.78613271895861 |
|
- type: max_f1 |
|
value: 80.358908624794 |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
<h1 align="center">Salesforce/SFR-Embedding-Mistral</h1> |
|
|
|
**SFR-Embedding by Salesforce Research.** |
|
|
|
The model is trained on top of [E5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) and [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). |
|
|
|
This project is for research purposes only. Third-party datasets may be subject to additional terms and conditions under their associated licenses. Please refer to specific papers for more details: |
|
- [MTEB benchmark](https://arxiv.org/abs/2210.07316) |
|
- [Mistral](https://arxiv.org/abs/2310.06825) |
|
- [E5-mistral-7b-instruct](https://arxiv.org/pdf/2401.00368.pdf) |
|
|
|
More technical details will be updated later. |
|
|
|
## How to run |
|
|
|
### Transformers |
|
The models can be used as follows: |
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'How to bake a chocolate cake'), |
|
get_detailed_instruct(task, 'Symptoms of the flu') |
|
] |
|
# No need to add instruction for retrieval documents |
|
passages = [ |
|
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!", |
|
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness." |
|
] |
|
|
|
# load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-Mistral') |
|
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Mistral') |
|
|
|
# get the embeddings |
|
max_length = 4096 |
|
input_texts = queries + passages |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt") |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
# [[86.7153549194336, 36.64569091796875], [35.00493621826172, 82.0738525390625]] |
|
``` |
|
|
|
### Sentence Transformers |
|
```python |
|
|
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
model = SentenceTransformer("Salesforce/SFR-Embedding-Mistral") |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'How to bake a chocolate cake'), |
|
get_detailed_instruct(task, 'Symptoms of the flu') |
|
] |
|
# No need to add instruction for retrieval documents |
|
passages = [ |
|
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!", |
|
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness." |
|
] |
|
|
|
embeddings = model.encode(queries + passages) |
|
scores = util.cos_sim(embeddings[:2], embeddings[2:]) * 100 |
|
print(scores.tolist()) |
|
# [[86.71537780761719, 36.645721435546875], [35.00497055053711, 82.07388305664062]] |
|
``` |
|
|
|
### MTEB Benchmark Evaluation |
|
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB](https://arxiv.org/abs/2210.07316) benchmark. |
|
|
|
|
|
SFR-Embedding Team (∗indicates lead contributors). |
|
* Rui Meng* |
|
* Ye Liu* |
|
* Shafiq Rayhan Joty |
|
* Caiming Xiong |
|
* Yingbo Zhou |
|
* Semih Yavuz |
|
|
|
### Citation |
|
```bibtex |
|
@misc{SFRAIResearch2024, |
|
title={SFR-Embedding-Mistral:Enhance Text Retrieval with Transfer Learning}, |
|
author={Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, Semih Yavuz}, |
|
howpublished={Salesforce AI Research Blog}, |
|
year={2024}, |
|
url={https://blog.salesforceairesearch.com/sfr-embedded-mistral/} |
|
} |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|