Edit model card

distilbert-base-uncased-deepset-promptinjection

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1504
  • F1: 0.9655
  • Auprc: 0.9793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Auprc
No log 1.0 69 0.0864 0.9828 0.9876
No log 2.0 138 0.1288 0.9655 0.9839
No log 3.0 207 0.0650 0.9828 0.9920
No log 4.0 276 0.1599 0.9741 0.9879
No log 5.0 345 0.1504 0.9655 0.9793

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for cyrp/distilbert-base-uncased-deepset-promptinjection-2

Adapter
(191)
this model