bourdoiscatie's picture
Update README.md
beb0a73
|
raw
history blame
4.11 kB
---
language:
- fr
license:
- unknown
size_categories:
- 10K<n<100K
task_categories:
- token-classification
tags:
- ner
---
# multinerd_fr_prompt_ner
## Summary
**multinerd_fr_prompt_ner** is a subset of the [**Dataset of French Prompts (DFP)**]().
It contains **X** rows that can be used for a name entity recognition task.
The original data (without prompts) comes from the dataset [multinerd](https://huggingface.co/datasets/tner/multinerd) by Tedeschi et al. where only the French part has been kept.
A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
## Prompts used
### List
21 prompts were created for this dataset. The logic applied consists in proposing prompts in the indicative tense, in the form of tutoiement and in the form of vouvoiement.
```
'Extraire les classes des mots du texte suivant : '+text,
'Extrais les entitées nommées du texte suivant : '+text,
'Extrayez les entitées nommées du texte suivant : '+text,
'Isoler les entitées nommées du texte suivant : '+text,
'Isole les entitées nommées du texte suivant : '+text,
'Isolez les entitées nommées du texte suivant : '+text,
'Dégager des entitées nommées dans le texte : '+text,
'Dégage des entitées nommées dans le texte : '+text,
'Dégagez des entitées nommées dans le texte : '+text,
'Générer des entitées nommées issues du texte suivant : '+text,
'Génère des entitées nommées issues du texte suivant : '+text,
'Générez des entitées nommées issues du texte suivant : '+text,
'Trouver les entitées nommées du texte : '+text,
'Trouve les entitées nommées du texte : '+text,
'Trouvez les entitées nommées du texte : '+text,
'Repérer les entitées nommées présentes dans le texte suivant : '+text,
'Repère les entitées nommées présentes dans le texte suivant : '+text,
'Repérez les entitées nommées présentes dans le texte suivant : '+text,
'Indiquer les entitées nommées du texte :'+text,
'Indique les entitées nommées du texte : '+text,
'Indiquez les entitées nommées du texte : '+text
```
### Features used in the prompts
In the prompt list above, `text` and `targets` have been constructed from:
```
multinerd = load_dataset('tner/multinerd','fr')
multinerd['test']['tokens'] = list(map(lambda i: ' '.join(multinerd['test']['tokens'][i]), range(len(multinerd['test']['tokens']))))
multinerd['test']['tags'] = list(map(lambda x: x.replace("[","").replace("]","").replace('10','O').replace('11','O').replace('12','O').replace('13','O').replace('14','O').replace('15','O').replace('16','O').replace('17','O').replace('18','O').replace('19','O').replace('20','O').replace('21','O').replace('22','O').replace('23','O').replace('24','O').replace('25','O').replace('26','O').replace('27','O').replace('28','O').replace('29','O').replace('30','O').replace('31','O').replace('32','O').replace('33','O').replace('34','O').replace('0','O').replace('1','B-PER').replace('2','I-PER').replace('3','B-LOC').replace('4','I-LOC').replace('5','B-ORG').replace('6','I-ORG').replace('7','O').replace('8','O').replace('9','O'), map(str, multinerd['test']['tags'])))
```
# Splits
- train with X samples
- dev with Y samples
- test with Z samples
# How to use?
```
from datasets import load_dataset
dataset = load_dataset("CATIE-AQ/multinerd_fr_prompt_ner")
```
# Citation
## Original data
> @inproceedings{tedeschi-navigli-2022-multinerd,
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
author = "Tedeschi, Simone and Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.60",
doi = "10.18653/v1/2022.findings-naacl.60",
pages = "801--812",
}
## This Dataset
## License
Unknow