dataset_info:
- config_name: aya_human_annotated
features:
- name: id
dtype: int64
- name: inputs
dtype: string
- name: targets
dtype: string
- name: language
dtype: string
- name: script
dtype: string
splits:
- name: test
num_bytes: 84266
num_examples: 250
download_size: 62478
dataset_size: 84266
- config_name: dolly_machine_translated
features:
- name: id
dtype: int64
- name: inputs
dtype: string
- name: targets
dtype: string
- name: language
dtype: string
- name: script
dtype: string
splits:
- name: test
num_bytes: 299665
num_examples: 400
download_size: 211317
dataset_size: 299665
configs:
- config_name: aya_human_annotated
data_files:
- split: test
path: aya_human_annotated/test-*
- config_name: dolly_machine_translated
data_files:
- split: test
path: dolly_machine_translated/test-*
license: apache-2.0
task_categories:
- question-answering
- translation
- summarization
- zero-shot-classification
language:
- zh
pretty_name: Heng666/Traditional_Chinese-aya_evaluation_suite
size_categories:
- 1M<n<10M
資料集描述
繁體中文 Aya (Traditional Chinese Aya Chinese;TCA):專注於繁體中文處理的 Aya 集合的精選子集
概述
繁體中文 Aya
是一個精心策劃的資料集,源自 CohereForAI 的綜合 Aya 集合,特別關注繁體中文文本資料。
此資料集結合了來自 CohereForAI/aya_evaluation_suite,過濾掉除繁體中文、簡體中文內容之外的所有內容。
目標
繁體中文 Aya
的目標是為研究人員、技術專家和語言學家提供即用型繁體中文文本資源,顯著減少專注於繁體中文的 NLP 和 AI 專案中數據預處理所需的時間和精力。
資料集來源與資訊
- 資料來源: 從 CohereForAI/aya_evaluation_suite 3 個子集而來。
- 語言: 繁體中文、簡體中文('zho')
- 應用: 非常適合語言建模、文本分類、情感分析、和機器翻譯等任務。
- 論文連結: 2402.06619
- 維護人: Heng666
- License: Apache-2.0
使用方法
此資料集是開始繁體中文語言專案(從學術研究到商業應用)的基礎工具。
透過提供預先過濾的繁體中文文本來源,繁體中文 Aya
讓研究人員、技術專家和開發人員能夠直接進行模型訓練、分析和應用程式開發,而無需進行資料清理和語言過濾的初步麻煩。
展示範例
from datasets import load_dataset
dataset = load_dataset("Heng666/Traditional_Chinese-aya_evaluation_suite", "aya_human_annotated")
在上面的程式碼片段中,「aya_dataset」指的是原始 「aya_evaluation_suite」中「aya_human_annotated」子集的繁體中文版本。 您可以透過在載入資料集時指定其名稱來載入其他子集。
訪問和貢獻
可在 Heng666/Traditional_Chinese-aya_evaluation_suite 下的 Hugging Face Hub 上獲取,
繁體中文 Aya
邀請社區做出貢獻。鼓勵用戶提供回饋、提出改進建議。
支持與合作
我們致力於圍繞繁體中文人工智慧和 NLP 研究創造一個包容和支持的環境。如需支援、協作或有關資料集的疑問,請透過 Hugging Face Hub 的討論部分進行聯絡。
Original Dataset Card of Aya by CohereForAI
Dataset Summary
Aya Evaluation Suite
contains a total of 26,750 open-ended conversation-style prompts to evaluate multilingual open-ended generation quality.
To strike a balance between language coverage and the quality that comes with human curation, we create an evaluation suite that includes:
- human-curated examples in 7 languages (
tur, eng, yor, arb, zho, por, tel
) →aya-human-annotated
. - machine-translations of handpicked examples into 101 languages →
dolly-machine-translated
. - human-post-edited translations into 6 languages (
hin, srp, rus, fra, arb, spa
) →dolly-human-edited
.
- Curated by: Contributors of Aya Open Science Intiative, professional annotators, and synthetic generation
- Language(s): 101 languages
- License: Apache 2.0
- Aya Datasets Family:
Name Explanation aya_dataset Human-annotated multilingual instruction finetuning dataset, comprising over 204K instances across 65 languages. aya_collection Created by applying instruction-style templates from fluent speakers to 44 datasets, including translations of 19 instruction-style datasets into 101 languages, providing 513M instances for various tasks. aya_evaluation_suite A diverse evaluation set for multilingual open-ended generation, featuring 250 culturally grounded prompts in 7 languages, 200 translated prompts in 24 languages, and human-edited versions selected for cross-cultural relevance from English Dolly in 6 languages.
Dataset
The Aya Evaluation Suite
includes the following subsets:
- aya-human-annotated: 250 original human-written prompts in 7 languages each.
- dolly-machine-translated: 200 human-selected prompts from databricks-dolly-15k , automatically translated with the NLLB model from English into 101 languages (114 dialects in total).
- dolly-human-edited: 200 dolly-machine-translated prompts post-edited by fluent speakers for 6 languages.
Load with Datasets
To load this dataset consisting of prompt-completions with datasets
, you just need to install Datasets as pip install datasets --upgrade
and then use the following code:
from datasets import load_dataset
aya_eval = load_dataset("CohereForAI/aya_evaluation_suite", "dataset")
Data Fields
id
: Unique id of the data point.inputs
: Prompt or input to the language model.targets
: Completion or output of the language model. (Not applicable fordolly-human-edited
)language
: The language of theprompt
andcompletion.
script
: The writing system of the language.source_id
: Corresponding original row index from the databricks-dolly-15k dataset (Field applicable only for subsetsdolly-machine-translated
&dolly-human-edited
)
Data Instances
Example data instances from the Aya Evaluation Suite
subsets are listed in the toggled sections below.
aya-human-annotated
{
"id": 42,
"inputs": "What day is known as Star Wars Day?",
"targets": "May 4th (May the 4th be with you!)",
"language": "eng",
"script": "Latn",
}
Dolly-machine-translated and dolly-human-edited
- These two subsets are parallel datasets (data instances can be mapped using their
id
column). - Note that in the
dolly-machine-translated
subset, we also include the original English subset (id 1-200
), which is translated into 101 languages. Furthermore, the fieldid
can be used to match the translations of the same data instance across languages. - The
source_id
field contains the corresponding original row index from the databricks-dolly-15k dataset.dolly-machine-translated
{ "id": 2, "inputs": "How to escape from a helicopter trapped in water ?", "targets": "If you are ever trapped inside a helicopter while submerged in water, it’s best to try and remain calm until the cabin is completely underwater. It’s better to wait for pressure to be equalized, before you try to open the door or break the glass to escape.", "language": "eng", "script": "Latn", "source_id": 6060, }
dolly-human-edited
{ "id": 2, "inputs": "Comment peut-on s'échapper d'un hélicoptère piégé dans l'eau ?", "targets": "-", "language": "fra", "script": "Latn", "source_id": 6060, }
Statistics
The toggled table below lists the breakdown of languages in each subset.
Languages
aya-human-annotated
ISO Code | Language | Resources |
---|---|---|
tel |
Telugu | Low |
yor |
Yorùbá | Low |
arb |
Arabic | High |
tur |
Turkish | High |
por |
Portuguese | High |
zho |
Chinese (Simplified) | High |
eng |
English | High |
dolly-machine-translated
ISO Code | Language | Resources |
---|---|---|
ace |
Achinese | Low |
afr |
Afrikaans | Mid |
amh |
Amharic | Low |
ara (arb , acm , acq , aeb , ajp , apc , ars , ary & arz ) |
Arabic (Standard, Gelet Iraqi, Ta'izzi-Adeni, Tunisian, South Levantine, North Levantine, Najdi, Moroccan & Egyptian) | High |
aze (azb & azj ) |
Azerbaijani (South & North) | Low |
bel |
Belarusian | Mid |
ben |
Bengali | Mid |
bjn |
Banjar | Low |
bul |
Bulgarian | Mid |
cat |
Catalan | High |
ceb |
Cebuano | Mid |
ces |
Czech | High |
cym |
Welsh | Low |
dan |
Danish | Mid |
deu |
German | High |
ell |
Greek | Mid |
eng |
English | High |
epo |
Esperanto | Low |
est |
Estonian | Mid |
eus |
Basque | High |
fin |
Finnish | High |
fra |
French | High |
gla |
Scottish Gaelic | Low |
gle |
Irish | Low |
glg |
Galician | Mid |
guj |
Gujarati | Low |
hat |
Haitian Creole | Low |
hau |
Hausa | Low |
heb |
Hebrew | Mid |
hin |
Hindi | High |
hun |
Hungarian | High |
hye |
Armenian | Low |
ibo |
Igbo | Low |
ind |
Indonesian | Mid |
isl |
Icelandic | Low |
ita |
Italian | High |
jav |
Javanese | Low |
jpn |
Japanese | High |
kan |
Kannada | Low |
kas |
Kashmiri | Low |
kat |
Georgian | Mid |
kau (knc ) |
Kanuri (Central) | Low |
kaz |
Kazakh | Mid |
khm |
Khmer | Low |
kir |
Kyrgyz | Low |
kor |
Korean | High |
kur (ckb & kmr ) |
Kurdish (Central & Northern) | Low |
lao |
Lao | Low |
lav (lvs ) |
Latvian (Standard) | Mid |
lit |
Lithuanian | Mid |
ltz |
Luxembourgish | Low |
mal |
Malayalam | Low |
mar |
Marathi | Low |
min |
Minangkabau | Low |
mkd |
Macedonian | Low |
mlg (plt ) |
Malagasy (Plateau) | Low |
mlt |
Maltese | Low |
mni |
Manipuri | Low |
mon (khk ) |
Mongolian (Khalkha) | Low |
mri |
Maori | Low |
msa (zsm ) |
Malay (Standard) | Mid |
mya |
Burmese | Low |
nep (npi ) |
Nepali | Low |
nld |
Dutch | High |
nor (nno & nob ) |
Norwegian (Nynorsk & Bokmål) | Low |
nso |
Northern Sotho | Low |
pes |
Persian | High |
pol |
Polish | High |
por |
Portuguese | High |
pus (pbt ) |
Pashto (Southern) | Low |
ron |
Romanian | Mid |
rus |
Russian | High |
sin |
Sinhala | Low |
slk |
Slovak | Mid |
slv |
Slovenian | Mid |
smo |
Samoan | Low |
sna |
Shona | Low |
snd |
Sindhi | Low |
som |
Somali | Low |
sot |
Southern Sotho | Low |
spa |
Spanish | High |
sqi (als ) |
Albanian (Tosk) | Low |
srp |
Serbian | High |
sun |
Sundanese | Low |
swa (swh ) |
Swahili (Coastal) | Low |
swe |
Swedish | High |
tam |
Tamil | Mid |
taq |
Tamasheq | Low |
tel |
Telugu | Low |
tgk |
Tajik | Low |
tha |
Thai | Mid |
tur |
Turkish | High |
ukr |
Ukrainian | Mid |
urd |
Urdu | Mid |
uzb (uzn ) |
Uzbek (Nothern) | Mid |
vie |
Vietnamese | High |
xho |
Xhosa | Low |
yid (ydd ) |
Yiddish (Eastern) | Low |
yor |
Yoruba | Low |
zho (+ yue ) |
Chinese (Simplified & Cantonese) | High |
zul |
Zulu | Low |
dolly-human-edited
ISO Code | Language | Resources |
---|---|---|
arb |
Arabic | High |
fra |
French | High |
hin |
Hindi | High |
rus |
Russian | High |
spa |
Spanish | High |
srp |
Serbian | High |
Motivations & Intentions
- Curation Rationale: This evaluation suite is tailored to test the generation quality of multilingual models, with the aim of balancing language coverage and human-sourced quality. It covers prompts originally written in each language, as well as English-centric translated, and manually curated or edited prompts for a linguistically broad, but rich testbed. The list of languages was initially established from mT5 and aligned with the annotators’ language list and the NLLB translation model.
Known Limitations
- Translation Quality: Note that the expressiveness of the
dolly-machine-translated
subset is limited by the quality of the translation model and may adversely impact an estimate of ability in languages where translations are not adequate. If this subset is used for testing, we recommend it be paired and reported with the professionally post-editeddolly-human-edited
subset or theaya-human-annotated
set, which, while covering only 7 languages, is entirely created by proficient target language speakers.
Additional Information
Provenance
- Methods Used: combination of original annotations by volunteers, automatic translation, and post-editing of translations by professional annotators.
- Methodology Details:
- Source: Original annotations from Aya dataset along with translations and post-edits of Dolly dataset
- Platform: Aya Annotation Platform
- Dates of Collection: May 2023 - Dec 2023
Dataset Version and Maintenance
- Maintenance Status: Actively Maintained
- Version Details:
- Current version: 1.0
- Last Update: 02/2024
- First Release: 02/2024
- Maintenance Plan: No updates planned.
Authorship
- Publishing Organization: Cohere For AI
- Industry Type: Not-for-profit - Tech
- Contact Details: https://aya.for.ai/
Licensing Information
This dataset can be used for any purpose, whether academic or commercial, under the terms of the Apache 2.0 License.
Citation Information
@misc{singh2024aya,
title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning},
author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer and Ahmet Üstün and Marzieh Fadaee and Sara Hooker},
year={2024},
eprint={2402.06619},
archivePrefix={arXiv},
primaryClass={cs.CL}
}