text
stringlengths
0
1.46k
E.g. for use with categorical_crossentropy.
Arguments
y: class vector to be converted into a matrix (integers from 0 to num_classes).
num_classes: total number of classes. If None, this would be inferred as the (largest number in y) + 1.
dtype: The data type expected by the input. Default: 'float32'.
Returns
A binary matrix representation of the input. The classes axis is placed last.
Example
>>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
>>> a = tf.constant(a, shape=[4, 4])
>>> print(a)
tf.Tensor(
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
>>> b = tf.constant([.9, .04, .03, .03,
... .3, .45, .15, .13,
... .04, .01, .94, .05,
... .12, .21, .5, .17],
... shape=[4, 4])
>>> loss = tf.keras.backend.categorical_crossentropy(a, b)
>>> print(np.around(loss, 5))
[0.10536 0.82807 0.1011 1.77196]
>>> loss = tf.keras.backend.categorical_crossentropy(a, a)
>>> print(np.around(loss, 5))
[0. 0. 0. 0.]
Raises
Value Error: If input contains string value
normalize function
tf.keras.utils.normalize(x, axis=-1, order=2)
Normalizes a Numpy array.
Arguments
x: Numpy array to normalize.
axis: axis along which to normalize.
order: Normalization order (e.g. order=2 for L2 norm).
Returns
A normalized copy of the array.
get_file function
tf.keras.utils.get_file(
fname,
origin,
untar=False,
md5_hash=None,
file_hash=None,
cache_subdir="datasets",
hash_algorithm="auto",
extract=False,
archive_format="auto",
cache_dir=None,
)
Downloads a file from a URL if it not already in the cache.
By default the file at the url origin is downloaded to the cache_dir ~/.keras, placed in the cache_subdir datasets, and given the filename fname. The final location of a file example.txt would therefore be ~/.keras/datasets/example.txt.
Files in tar, tar.gz, tar.bz, and zip formats can also be extracted. Passing a hash will verify the file after download. The command line programs shasum and sha256sum can compute the hash.
Example
path_to_downloaded_file = tf.keras.utils.get_file(
"flower_photos",
"https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz",
untar=True)
Arguments
fname: Name of the file. If an absolute path /path/to/file.txt is specified the file will be saved at that location.
origin: Original URL of the file.
untar: Deprecated in favor of extract argument. boolean, whether the file should be decompressed
md5_hash: Deprecated in favor of file_hash argument. md5 hash of the file for verification
file_hash: The expected hash string of the file after download. The sha256 and md5 hash algorithms are both supported.
cache_subdir: Subdirectory under the Keras cache dir where the file is saved. If an absolute path /path/to/folder is specified the file will be saved at that location.
hash_algorithm: Select the hash algorithm to verify the file. options are 'md5', 'sha256', and 'auto'. The default 'auto' detects the hash algorithm in use.
extract: True tries extracting the file as an Archive, like tar or zip.
archive_format: Archive format to try for extracting the file. Options are 'auto', 'tar', 'zip', and None. 'tar' includes tar, tar.gz, and tar.bz files. The default 'auto' corresponds to ['tar', 'zip']. None or an empty list will return no matches found.
cache_dir: Location to store cached files, when None it defaults to the default directory ~/.keras/.
Returns
Path to the downloaded file
Progbar class
tf.keras.utils.Progbar(
target, width=30, verbose=1, interval=0.05, stateful_metrics=None, unit_name="step"
)
Displays a progress bar.