text
stringlengths
0
4.99k
features = pd.DataFrame(features)
features.head()
train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
The selected parameters are: Pressure, Temperature, Saturation vapor pressure, Vapor pressure deficit, Specific humidity, Airtight, Wind speed
Training dataset
The training dataset labels starts from the 792nd observation (720 + 72).
start = past + future
end = start + train_split
x_train = train_data[[i for i in range(7)]].values
y_train = features.iloc[start:end][[1]]
sequence_length = int(past / step)
The timeseries_dataset_from_array function takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as length of the sequences/windows, spacing between two sequence/windows, etc., to produce batches of sub-timeseries inputs and targets sampled from the main timeseries.
dataset_train = keras.preprocessing.timeseries_dataset_from_array(
x_train,
y_train,
sequence_length=sequence_length,
sampling_rate=step,
batch_size=batch_size,
)
Validation dataset
The validation dataset must not contain the last 792 rows as we won't have label data for those records, hence 792 must be subtracted from the end of the data.
The validation label dataset must start from 792 after train_split, hence we must add past + future (792) to label_start.
x_end = len(val_data) - past - future
label_start = train_split + past + future
x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
y_val = features.iloc[label_start:][[1]]
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
x_val,
y_val,
sequence_length=sequence_length,
sampling_rate=step,
batch_size=batch_size,
)
for batch in dataset_train.take(1):
inputs, targets = batch
print(\"Input shape:\", inputs.numpy().shape)
print(\"Target shape:\", targets.numpy().shape)
Input shape: (256, 120, 7)
Target shape: (256, 1)
Training
inputs = keras.layers.Input(shape=(inputs.shape[1], inputs.shape[2]))
lstm_out = keras.layers.LSTM(32)(inputs)
outputs = keras.layers.Dense(1)(lstm_out)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss=\"mse\")
model.summary()
Model: \"functional_1\"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 120, 7)] 0
_________________________________________________________________
lstm (LSTM) (None, 32) 5120
_________________________________________________________________
dense (Dense) (None, 1) 33
=================================================================
Total params: 5,153
Trainable params: 5,153
Non-trainable params: 0
_________________________________________________________________
We'll use the ModelCheckpoint callback to regularly save checkpoints, and the EarlyStopping callback to interrupt training when the validation loss is not longer improving.
path_checkpoint = \"model_checkpoint.h5\"
es_callback = keras.callbacks.EarlyStopping(monitor=\"val_loss\", min_delta=0, patience=5)
modelckpt_callback = keras.callbacks.ModelCheckpoint(
monitor=\"val_loss\",
filepath=path_checkpoint,
verbose=1,
save_weights_only=True,
save_best_only=True,
)
history = model.fit(
dataset_train,
epochs=epochs,
validation_data=dataset_val,
callbacks=[es_callback, modelckpt_callback],
)
Epoch 1/10
1172/1172 [==============================] - ETA: 0s - loss: 0.2059
Epoch 00001: val_loss improved from inf to 0.16357, saving model to model_checkpoint.h5
1172/1172 [==============================] - 101s 86ms/step - loss: 0.2059 - val_loss: 0.1636
Epoch 2/10
1172/1172 [==============================] - ETA: 0s - loss: 0.1271