hyperedge
int64
1
190k
nodes
stringlengths
3
30
timestamp
float64
2.23B
222B
1
[1, 2]
48,942,985,907
2
[3, 4, 5]
48,944,035,260
3
[8, 6, 7]
48,944,144,880
4
[9, 10, 11, 12, 13]
48,944,145,834
5
[14, 15]
48,944,187,157
6
[16, 17, 18]
48,944,205,644
7
[19, 20]
48,944,330,880
8
[4, 21]
48,944,354,450
9
[19]
48,944,481,514
11
[4]
48,944,534,724
13
[29, 6]
48,944,834,137
14
[9]
48,944,952,167
15
[4, 30]
48,944,959,450
16
[9, 31]
48,945,107,917
17
[8, 33, 32]
48,945,113,064
18
[34, 35]
48,945,144,514
19
[36]
48,945,186,367
20
[16, 37, 38]
48,945,256,474
23
[43, 44, 45]
48,945,511,970
24
[48, 46, 47]
48,945,607,677
26
[50, 51]
48,945,733,584
27
[52, 22, 6]
48,945,920,147
28
[53, 54, 55]
48,945,955,744
30
[16, 60]
48,946,176,780
31
[61]
48,946,339,690
32
[26, 27, 62]
48,946,564,720
33
[64, 61, 63]
48,946,619,744
34
[65, 53]
48,946,675,544
37
[72, 70, 71]
48,946,988,324
38
[73, 74, 75, 76, 22]
48,946,998,637
39
[74, 61]
48,947,032,427
41
[80, 70, 79]
48,947,342,804
43
[48, 11, 83]
48,948,225,670
44
[84]
48,948,274,730
45
[88, 85, 86, 87]
48,948,541,164
46
[89, 90, 91]
48,948,852,977
47
[92, 93, 94]
48,949,722,770
49
[8]
48,949,959,017
50
[88, 43]
48,950,347,864
51
[98, 99]
48,950,665,277
54
[105, 106, 107]
48,952,227,240
55
[61, 53]
48,952,874,667
56
[108, 109, 110, 111]
48,953,179,814
57
[112]
48,954,399,190
58
[9, 53, 113]
48,955,193,814
59
[114, 115, 19, 116, 117]
48,955,324,920
60
[17, 85, 118]
48,956,419,580
61
[19, 11, 61, 53]
48,956,526,910
62
[98, 67, 119]
48,956,969,194
63
[120]
48,957,937,124
64
[121]
48,958,056,900
65
[122, 123]
48,958,445,144
66
[124, 125]
48,959,543,584
67
[65, 126, 127]
48,959,754,950
68
[128, 129, 61, 6]
48,960,049,667
69
[130]
48,960,509,340
70
[131, 132]
48,960,663,750
71
[133]
48,960,793,434
72
[131, 134, 135, 136, 61]
48,960,877,427
73
[8, 137]
48,968,038,744
74
[89, 138, 139, 22]
48,968,130,580
75
[56, 115, 140]
48,968,181,717
76
[141, 142]
48,968,713,800
77
[144, 129, 143]
48,969,424,787
78
[145, 146]
48,971,200,144
80
[16, 149, 150]
48,976,454,354
81
[151]
48,978,196,057
82
[32, 137, 153, 152]
48,979,860,160
84
[156, 67, 155, 21]
48,981,673,324
86
[6, 9, 22, 61, 159]
48,983,038,287
88
[54]
48,990,918,130
89
[161, 162, 163, 164, 37]
48,991,950,427
90
[45, 165, 166, 167]
48,992,876,384
92
[128, 169]
48,993,706,864
93
[9, 6]
48,994,239,937
94
[170, 171]
48,994,854,467
95
[169, 172, 110, 81, 63]
48,996,467,760
96
[173, 174]
48,997,537,827
97
[11, 175]
48,998,882,644
98
[176, 153]
48,999,089,237
99
[4]
49,001,358,260
100
[177, 178, 92, 165]
49,002,262,744
101
[4]
49,003,165,357
102
[98, 12]
49,004,472,504
103
[179, 180]
49,004,505,874
104
[181]
49,006,275,674
106
[41, 183]
49,008,103,050
107
[184, 61]
49,008,866,937
108
[185, 12]
49,009,217,484
109
[2, 41, 42, 49, 26]
49,010,024,347
110
[186, 26]
49,010,229,207
111
[8, 57, 176]
49,012,073,500
112
[155, 187, 181]
49,013,836,660
113
[1, 125, 157]
49,019,070,544
115
[57, 187]
49,022,223,057
116
[16, 41]
49,024,137,374
117
[190, 14]
49,024,827,307
118
[14, 191]
49,027,870,027
119
[192, 193, 194]
49,028,743,494
121
[26, 197, 198]
49,035,067,647

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="tags-ask-ubuntu", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
48

Collection including SauravMaheshkar/tags-ask-ubuntu