text
stringlengths
0
1.06k
USE_SUPERVISED_CONSISTENCY: False
CONSISTENCY:
AUG:
MOTION:
RANGE: (0.2, 0.5)
SCHEDULER:
WARMUP_ITERS: 0
WARMUP_METHOD:
MRI_RECON:
AUG_SENSITIVITY_MAPS: True
SCHEDULER_P:
IGNORE: False
TRANSFORMS: ()
NOISE:
MASK:
RHO: 1.0
SCHEDULER:
WARMUP_ITERS: 0
WARMUP_METHOD:
STD_DEV: (1,)
LATENT_LOSS_NAME: mag_l1
LATENT_LOSS_WEIGHT: 0.1
LOSS_NAME: l1
LOSS_WEIGHT: 0.1
NUM_LATENT_LAYERS: 1
USE_CONSISTENCY: True
USE_LATENT: False
CS:
MAX_ITER: 200
REGULARIZATION: 0.005
DENOISING:
META_ARCHITECTURE: GeneralizedUnrolledCNN
NOISE:
STD_DEV: (1,)
USE_FULLY_SAMPLED_TARGET: True
USE_FULLY_SAMPLED_TARGET_EVAL: None
DEVICE: cuda
M2R:
META_ARCHITECTURE: GeneralizedUnrolledCNN
USE_SUPERVISED_CONSISTENCY: False
META_ARCHITECTURE: GeneralizedUnrolledCNN
N2R:
META_ARCHITECTURE: GeneralizedUnrolledCNN
USE_SUPERVISED_CONSISTENCY: False
NM2R:
META_ARCHITECTURE: GeneralizedUnrolledCNN
USE_SUPERVISED_CONSISTENCY: False
NORMALIZER:
KEYWORDS: ()
NAME: TopMagnitudeNormalizer
RECON_LOSS:
NAME: l1
RENORMALIZE_DATA: True
SEG:
ACTIVATION: sigmoid
CLASSES: ()
INCLUDE_BACKGROUND: False
SSDU:
MASKER:
PARAMS:
META_ARCHITECTURE: GeneralizedUnrolledCNN
UNET:
BLOCK_ORDER: ('conv', 'relu', 'conv', 'relu', 'batchnorm', 'dropout')
CHANNELS: 32
DROPOUT: 0.0
IN_CHANNELS: 2
NORMALIZE: False
NUM_POOL_LAYERS: 4
OUT_CHANNELS: 2
UNROLLED:
BLOCK_ARCHITECTURE: ResNet
CONV_BLOCK:
ACTIVATION: relu
NORM: none
NORM_AFFINE: False
ORDER: ('norm', 'act', 'drop', 'conv')
DROPOUT: 0.0
FIX_STEP_SIZE: False
KERNEL_SIZE: (3,)
NUM_EMAPS: 1
NUM_FEATURES: 128
NUM_RESBLOCKS: 2
NUM_UNROLLED_STEPS: 8
PADDING:
SHARE_WEIGHTS: False
WEIGHTS:
OUTPUT_DIR: /bmrNAS/people/arjun/results/meddlr/tests/basic
SEED: -1
SOLVER:
BASE_LR: 0.0001
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 200
GAMMA: 0.1
GRAD_ACCUM_ITERS: 1
LR_SCHEDULER_NAME: WarmupMultiStepLR
MAX_ITER: 1600
MOMENTUM: 0.9
OPTIMIZER: Adam
STEPS: (30000,)